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Introduction
Neuromodulation of the cardiac autonomic nervous system (ANS) 

is evolving as a novel approach to treat arrhythmias. Excitation of 
the parasympathetic nervous system exerts negative chronotropic, 
dromotropic and inotropic effects on the heart 1,2. Electrical 
stimulation of the vagus nerve (VNS) has emerged as a promising 
therapy for various conditions, including neural disorders and 
cardiac diseases 3-5. VNS was approved by the US Food and Drug 
Administration to treat refractory epilepsy and depression 6,7  . Here, 
we focus on recent advances using VNS, particularly transcutaneous 
VNS, to treat arrhythmias.

1.1 Anatomy of the autonomic nervous system
Signal processing of the cardiac ANS occurs at several levels: i) 

central; ii) intrathoracic extracardiac; and iii) intrinsic cardiac level 
8. Neural trafficking is influenced by the brain, spinal cord, extrinsic 
and intrinsic cardiac ganglia (Figure 1). Autonomic neural signals 

from other organ systems (e.g. kidneys) can affect the cardiac ANS 
through complex interactions in the ANS 9-12.

1.2 Sympathetic Efferent Neurotransmission
The cardiac sympathetic preganglionic fibers originate in the 

central nervous system primarily in the brainstem and are modulated 
by higher centers such as the subthalamic and periaqueductal grey as 
well as the rostral ventrolateral medulla 9-12. Then, the sympathetic 
preganglionic fibers reach postganglionic neurons in the superior 
cervical, middle cervical, cervicothoracic (stellate) ganglia and 
mediastinal ganglia along the cervical and thoracic spinal cord (e.g. 
from C2 to T4 or T5) 9-12. These postganglionic neurons project axons 
via multiple cardiopulmonary nerves to the atrial and ventricular 
myocardium as well as limited populations of intrinsic cardiac 
adrenergic neurons. The major post-ganglionic neurotransmitter 
of the sympathetic nervous system is norepinephrine. The 
most important mechanism underlying sympathetic-mediated 
arrhythmogenesis is the activation of the β-adrenergic receptors 
and stimulatory Gs proteins, which leads to stimulation of adenylyl 
cyclase followed by protein kinase A–mediated phosphorylation 
of the L-type calcium channels (increasing calcium influx) and 
ryanodine receptors 13. Phosphorylation of the latter enhances the 
opening probability of the ryanodine receptors and increases calcium 
release from the sarcoplasmic reticulum (SR). Excessive calcium 
influx and SR calcium release are known to be arrhythmogenic 
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because calcium homeostasis is crucial in maintaining normal 
cardiomyocyte functions such as excitability and mitochondrial 
stability. Elevated intracellular calcium concentration can activate the 
sodium-calcium exchanger (NCX) to extrude intracellular calcium 
to the extracellular space. However, extruding one calcium ion occurs 
at the expense of importing 3 sodium ions, which is electrogenic 
and can lead to early or delayed after-depolarization 14. Therefore, 
disturbed calcium homeostasis has been implicated as a leading 
mechanism underling high sympathetic outflow induced ventricular 
tachyarrhythmias (VAs) such as catecholaminergic polymorphic VT, 
long QT syndrome and heart failure.

1.3 Parasympathetic Efferent Neurotransmission
Preganglionic neurons of the parasympathetic nervous system 

are located in the nucleus ambiguous and dorsal motor nucleus 
of the medulla oblongata as well as scattered regions between 
these two structures 15,16. Their axons project to the postganglionic 
parasympathetic neurons in the numerous intrinsic cardiac ganglia 
via bilateral vagosympathetic trunks and multiple intrathoracic 

cardiopulmonary nerves 17. Postganglionic neurons, concentrated 
in epicardial fat pads, then provide direct innervation to the sinus 
node, atrioventricular node as well as both atria and ventricles 9,18,19. 
Acetylcholine is the major parasympathetic neurotransmitter of the 
heart; stimulation of the cholinergic muscarinic receptors (mainly 
the M2 receptors) inhibits adenylyl cyclase and reduces cyclic 
adenosine monophosphate via pertussis toxin-sensitive inhibitory 
G-proteins (Gi), which inhibits the L-type calcium current and 
hyperpolarization-activated current If, as well as activates the Ach-
gated potassium current (IKACh) 20. Important co-transmitters 
released with vagus nerve stimulation include nitric oxide and 
vasoactive intestinal peptide 21.

1.4 The intrinsic cardiac autonomic nervous system 
Sympathetic and parasympathetic nerves and neurons as well as 

interconnecting nerves and neurons form a complex cardiac neural 
network. These neural elements converge at several ganglionated 
plexi (GP) embedded within epicardial fat pads 22,23. In the atria, 
the great majority of GP are concentrated at the pulmonary vein-
atrial junctions. In contrast, the ventricular GP are primarily located 
at the origins of major coronary arteries or aortic root 24. These GP 
act as integration centers that modulate the interactions between the 
extrinsic cardiac ANS and the heart 25   and contain both afferent and 
efferent sympathetic as well as parasympathetic nerves and neurons. 

The autonomic nervous system related to arrhythmias consists of neurons and nerves in the 
brain, spinal cord, heart and kidneys and is similar to a closed-loop circuit that modulates the 
function of target organs. Activation of both the afferent and efferent vagal nerve fibers can 
increase the vagal tone in the cardiac closed-loop circuit and protect the heart. Blue lines represent 
sympathetic nerve fibers and green lines represent vagus nerve fibers. Inset: At the cellular level, 
sympathetic nervous system primarily releases norepinephrine, which stimulates the cardiac 
β-receptors. Parasympathetic nervous system primarily releases acetylcholine, stimulating 
cholinergic muscarinergic receptors on the myocytes and activating the α7nAChR pathway to 
reduce inflammation and fibrosis in the heart. SG, stellate ganglion; DRG, dorsal root ganglia; PVN, 
paraventricular nucleus; NTS, nucleus tractus solitaries; β1, β-adrenergic receptor; M2, muscarinic 
receptor; Gi, inhibitory G-protein; Gs, stimulatory G-protein; AC, adenylate cyclase; α7nAChR, α7 
nicotinic acetyl-choline receptor.

Figure 1: Neurohumoral control and functional organization of cardiac 
autonomic innervation

A. Paroxysmal AF was preceded by nearly simultaneous activation of the SGNA, VNA and LSLGPNA. 
B. LL-VNS immediately suppressed SGNA, demonstrating its anti-adrenergic effect. Reproduced 
with permission from reference 53.

Figure 2:
Simultaneous recording of ECG, stellate ganglion nerve activity 
(SGNA), vagus nerve activity (VNA) and superior left GP nerve 
activity (SLGPNA) in ambulatory dogs
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the NTS first; axons from the NTS project to the autonomic and 
cardiovascular centers in the brainstem as well to the hypothalamus 
and cerebrum. It is important to note that the afferent parasympathetic 
neural trafficking from peripheral organs back to the brain  allows the 
brain to modulate the ANS and maintain autonomic homeostasis.

2. Vagus nerve stimulation to treat atrial fibrillation
2.1 Rationale for vagus nerve stimulation to treat atrial fibril-
lation

Simultaneous recordings of the canine left stellate ganglion 
(LSG) and left vagus nerve over several weeks revealed that co-
activation of the sympathetic and parasympathetic nervous systems 
may precede paroxysmal AF (Figure 2) 34,35. That is, sympathetic 
and parasympathetic activity act synergistically to facilitate AF 
initiation38,39. In isolated atrial myocytes, parasympathetic stimulation 
shortened the atrial effective refractory period (ERP), whereas 
sympathetic stimulation increases calcium influx and SR calcium 
release which activates NCX, depolarizes the myocytes and elicit and 

For example, the bradycardic response elicited by cervical VNS 
was mediated by the anterior right GP adjacent to the sinus node; 
ablation of that GP greatly attenuated the bradycardic response 25.

1.5 Afferent Neurotransmission
Afferent nerve fibers from the mechanosensory and chemosensory 

receptors provide critical feedback from the cardiovascular system 26. 
Trafficking from these nerve fibers are processed in the intrinsic cardiac 
ganglia, intrathoracic ganglia, dorsal root ganglia of the spinal cord, 
nodose ganglia (the inferior ganglia of the vagosympathetic trunk) 
and brainstem 27. Afferent cardiac sympathetic neural trafficking 
is transmitted to the nucleus tractus solitaries (NTS) and the 
paraventricular nucleus (PVN) 28-31. In addition to projections from 
the PVN to the neurohypophysis, anatomic and electrophysiological 
studies revealed that axons from the PVN also project directly to 
the autonomic centers in the medulla and spinal cord, indicating 
that the PVN is a key integrative center for the sympathetic neural 
trafficking in the brain and is involved in cardiovascular regulation 
32,33. Parasympathetic afferent fibers carry peripheral information to 

Figure 3B:

Figure 3: Effects of transcutaneous low-level vagus nerve stimulation on effective refractory period of atria, pulmonary veins and on neural 
activity of ganglionated plexi.

Figure 3A:

A. Parameters were measured during 6 hours of rapid atrial pacing (RAP) simulating paroxysmal AF. In the last 3 hours, LL-TS, 80% below threshold, was applied with RAP. At all sites, mean ERP decreased 
significantly after 3 hours of RAP (*:p<0.05; **:p<0.01; compared to baseline). After 3 hours of RAP+LL-TS, mean ERP at all sites showed a significant reversal toward baseline values (#:p<0.05 , 
##:p<0.01; compared with the end of 3rd hour of RAP). Increased ERP dispersion by RAP was also reversed by LL-TS. B. Top. A typical example of neural recordings from the anterior right ganglionated 
plexi (ARGP) taken each hour (during sinus rhythm) when RAP was temporarily stopped. The middle and bottom panels showed the average amplitude and frequency of neural recordings. During the 
first 3 hours of RAP, there was a progressive increase in both the amplitude as well as the frequency of neural firing in the ARGP. With the addition of LL-TS, at 80% below threshold, the amplitude and 
frequency returned toward initial levels. RSPV, LSPV, RIPV and LIPV: right superior, left superior, right inferior and left inferior pulmonary vein, respectively. Reproduced from reference 65 with permission.
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48. LL-VNS, without slowing the sinus rate or AV conduction, 
increased the ERP in the atrium and pulmonary veins, suppressed 
AF inducibility, and shortened the duration of acetylcholine-induced 
AF 48,49. Since the atrial autonomic neural network is dominated 
by parasympathetic neural elements, inhibiting the GP by LL-
VNS leads to anti-cholinergic effects on GP and prolonged the 
ERP. Other mechanisms that LL-VNS suppresses AF have been 
proposed, including suppression of the LSG activity 50, release   of 
the neurotransmitter vasostatin-1 51 and nitric oxide 52. Direct neural 
recordings of the canine atrial GPs showed that LL-VNS could 
inhibit the neural activity of GPs, thereby suppressing AF 49.  Studies 
on ambulatory dogs demonstrated that paroxysmal AF was often 
initiated by simultaneous or sequential firing of the stellate ganglion, 
vagus nerve and GP (Figure 2). LL-VNS inhibited the LSG activity 
and sympathetic nerve density in the LSG, thereby suppressing 
paroxysmal atrial tachyarrhythmias 53. These findings indicated that 
LL-VNS was both anticholinergic and antiadrenergic, which may 
account for its antiarrhythmic effects.   

High sympathetic outflow enhances inflammation; inflammation 
leads to fibrosis through activation of pro-inflammatory cells (e.g. 
T-lymphocytes, monocytes/macrophages) and the cytokines 
they release. Inflammation, therefore, plays an important role in 
the pathogenesis of AF as well as neural, electrical and structural 
remodeling 54.   Since the discovery of the ∝-7 nicotinic 
acetylcholine receptor (∝-7nAChR)-mediated cholinergic 
anti-inflammatory pathway, the anti-inflammatory effects of the 
parasympathetic nervous system on cardiovascular diseases have 
attracted substantial attention 55. Some studies suggested that 
activation of ∝-7nAChR significantly reduces inflammation and 
fibrosis in the heart, in which the expression levels of high-mobility 
group box 1 (HMGB1), chemokine receptors and pro-inflammatory 
factors such as interleukin-6 and TNF-∝ were decreased56. In an 
ischemia/reperfusion model, VNS increased STAT3 phosphorylation 

early after-depolarization 36,37. Parasympathetic   stimulation activates 
acetylcholine dependent potassium currents (IKACh), leading to 
shortening the atrial ERP and action potential duration (APD) 
20,40,41 as well as a reduction in the atrial reentrant wavelength (the 
product of ERP and conduction velocity) to increase the probability 
that multiple reentrant circuits coexist in the atrial myocardium and 
facilitate AF maintenance 42. 

Direct VNS produces atrial ERP heterogeneity due to the 
heterogeneous distribution of vagal innervation and varying density 
of the M2 receptors in the atria 43. In past decades, VNS, at the 
strength to slow the sinus rate or atrioventricular (AV) conduction, 
was used as an experimental tool to induce and maintain AF 44,45. 
In contrast, mild activation of vagal tone through the baroreflex has 
been shown to suppress firing of pulmonary veins 46. This paradox 
illustrates the complexity of the cardiac ANS and arrhythmogenicity. 
That is, VNS can either enhance or suppress AF, depending on the 
strength of stimulation 47.  

2.2 Cervical low-level vagus nerve stimulation
The Oklahoma group first reported the antiarrhythmic effect of 

applying low-level VNS (LL-VNS) to canine cervical vagus nerve 

A. Comparison of AF burden between the 2 groups (median values and interquartile range). The 
p-value is based on a comparison of median AF burden levels at the 6-month time point after 
adjusting for baseline measures. In the control group, stimulation was delivered to the ear lobule 
where no vagal innervation exits. B. Patient-level data on AF burden change in the 2 groups. 
Patients whose AF burden decreased by >75% at follow up were categorized as responders. The 
proportion of responders was significantly larger in the active compared to the sham control group 
(47% vs. 5%, respectively, p=0.003). B = baseline; 3M = 3 months; 6M = 6 months. Reproduced 
from reference 68 with permission.

Figure 4: Effects of chronic transcutaneous low-level vagus nerve 
stimulation in atrial fibrillation burden

Both early afterdepolarization (EAD), A) and delayed afterdepolarization (DAD, B) can be elicited 
by the inward current generated by sodium-calcium exchanger (NCX). Reentry can be facilitated by 
shortened refractory period or action potential duration (C) as well as increased dispersion of the 
refractory period (D). Reproduced with permission from reference 14.

Figure 5: Arrhythmogenesis related to high sympathetic outflow.
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to therapy that can predict the response to chronic transcutaneous 
LL-TS therapy (Figure 4B). Although transcutaneous LL-TS has 
been shown to be able to affect heart rate variability and inflammatory 
markers within an hour 67, if these biomarkers predict long-term 
success remains unknown. Future large scale randomized clinical 
trials will be needed to optimize patient selection for transcutaneous 
LL-TS based on biomarkers as well as to determine if patients with 
more advanced stage of AF (e.g. persistent AF) still respond to 
transcutaneous LL-TS. 

3. Vagus nerve stimulation to treat ventricular 
tachyarrhythmias
3.1 Rationale for VNS to treat ventricular tachyarrhythmias 
(VAs)

VAs are often triggered by high sympathetic tone or reduced vagal 
tone 69. Sympathetic activation can facilitate the initiation of VAs 
through the following mechanisms: 1) shortening of the ventricular 
ERP 70 and increasing the steepness of the slope of the action 
potential duration restitution curve to facilitate ventricular fibrillation 
initiation 71; 2) increasing dispersion of refractoriness 72; 3) enhancing 
of ventricular repolarization heterogeneity 73; and 4) triggering of 
early and delayed after-depolarization (Figure 5) 14,74,75. Furthermore, 
underlying cardiomyopathy can enhance the sympathetic activity 
and further promote the occurrence of VAs, forming a vicious cycle 
between the sympathetic activity and VAs. For instance, in a canine 
model of myocardial infarction, LSG synapses and nerve density 
were increased due to ischemia, which in turn caused more instability 
in the electrophysiological properties and increase the propensity for 
VAs 76.

The beneficial effects of VNS on VAs are mediated directly 
by reducing the sympathetic activity and indirectly by inhibiting 
myocardial remodeling   and inflammation 61-62,77. Activation of the 
IKACh current through the muscarinic receptors and augmentation 
of neuronal nitric oxide production also contributes to the beneficial 
effects of VNS 78-81. In addition, inflammatory pathways have 
an important role in fibrosis 82, scar formation and hypertrophy 
83; inflammatory mediators such as interleukin-1 can be directly 
arrhythmogenic 84. In a rat model of ischemia/reperfusion, VNS 
reduced the infarct size, inflammatory cell infiltration and the levels 
of circulating inflammatory cytokines 85. Chronic VNS in a dog 
model of heart failure also normalized the levels of interleukin-6 and 
TNF-∝86and reduced plasma levels of angiotensin-II 87, a potent 
profibrotic mediator. Moreover, chronic VNS preserved the connexin 
43 proteins and reduced the prevalence of spontaneous ventricular 
tachycardia after myocardial infarction 88. 

At present, clinical management of ventricular tachycardia/
ventricular fibrillation is often restricted to pharmacological therapy 
and catheter ablation. Lately, invasive procedures such as thoracic 
epidural anesthesia (TEA), stellate ganglion blockade and cardiac 
sympathetic denervation (CSD), aiming at decreasing sympathetic 
outflow to the heart, have been shown to reduce the incidence of VTs 
in various conditions 89,91. The use of TEA is limited by antiplatelet 
or anticoagulation therapy due to concerns about bleeding. The effect 
of stellate ganglion blockade as well as left CSD or bilateral CSD 
often depends on the operator; collateral damage to sympathetic 

and inhibited NF-kB activation. The cholinergic anti-inflammatory 
pathway was involved in these effects 57.   

Pre-clinical evidence indicates that LL-VNS is anti-arrhythmic 
and anti-inflammatory. Because of the invasive nature of cervical LL-
VNS, it has only been tested acutely in post-operative AF in patients 
undergoing open heart surgery. The incidence of postoperative AF 
was reduced by 66% by LL-VNS (20 Hz) for 72 hours after cardiac 
surgery 58.

2.3 Transcutaneous low-level vagus nerve stimulation
A major drawback of cervical LL-VNS is its invasiveness, 

requiring surgical implantation of a neurostimulator and a cuff 
electrode around the cervical vagus nerve. Adverse effects include 
infection, Horner syndrome, discomfort and pain at implant site 
59-62. These adverse effects led to the investigation of transcutaneous 
LL-VNS. Tragus, a small pointed eminence of the external ear, is 
innervated by the auricular branch of the vagus nerve. The tragus 
is easily accessible to transcutaneous LL-VNS. Prior research using 
horseradish peroxidase to trace the cranial projection of the auricular 
branch of the vagus nerve found that the vagal afferent nerve fibers of 
the auricular branch terminate mainly in the NTS 63. It is important 
to note that VNS through the tragus only activates the afferent vagal 
neural trafficking because there is no efferent vagus nerves in the 
tragus that innervates the heart.

Preclinical studies showed that low-level tragus stimulation (LL-
TS), at the strength not slowing the sinus rate or AV conduction, 
exerted similar electrophysiological effects to cervical LL-VNS in 
terms of lengthening the ERP, suppressing pulmonary vein firing 
and AF as well as inhibiting the neural activity of major atrial GPs 
(Figure 3) 64,65. Notably, the anti-arrhythmic effects of LL-TS were 
still profound at the stimulation strength 80% below the threshold 
that slowed the sinus rate or AV conduction, suggesting that this 
level of stimulation might be tolerable in ambulatory patients with 
arrhythmias.   

Electrical stimulation of the tragus was tested in 48 healthy 
participants showing that tragus VNS significantly decreased the 
low-frequency/high-frequency ratio (LF/HF) measurement of heart 
rate variability, indicating a tendency toward parasympathetic tone 
66. In 2015, the Oklahoma group 67 reported a randomized clinical 
study applying transcutaneous LL-TS to patients with refractory 
paroxysmal AF referred for catheter ablation. Only one hour of 
transcutaneous LL-TS was enough to suppress ERP shortening 
and AF inducibility, shorten the AF duration, and decrease pro-
inflammatory markers such as tumor necrosis factor-∝ (TNF-
∝)   and C-reactive protein. A recent sham-controlled randomized 
clinical trial published by same group indicated that in ambulatory 
patients with paroxysmal AF, daily transcutaneous LL-TS (one 
hour, 20 Hz, 1 mA below the perception threshold) reduced the AF 
burden by 83% at 6 months (Figure 4). Plasma level of the TNF-∝ 
was reduced by 23% as well. These results suggest that transcutaneous 
LL-TS may serve as a novel, non-invasive therapy for patients in 
early stage of AF 68. However, as a major limitation of transcutaneous 
LL-TS, the response to transcutaneous LL-TS was variable among 
individual patients due to the lack of an acute biomarker of response 
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Transcutaneous LL-VNS may offer a non-invasive and an 

inexpensive alternative to treat a variety of cardiovascular or 
inflammatory diseases related to high sympathetic outflow. The 
optimal stimulus parameters of VNS for individual disease are yet 
to be determined. Future pre-clinical and clinical studies are needed 
to clarify mechanisms responsible for its therapeutic effects and 
optimize the stimulation parameters fortargeted disease.

References
1.	 Levy MN. Cardiac sympathetic-parasympathetic interactions. Federation 

proceedings. 1984; 43(11):2598-2602.
2.	  Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic Nervous System 

Dysfunction. Journal of the American College of Cardiology. 2019; 73(10):1189-
1206.

3.	 Nahas Z, Teneback C, Chae JH, Mu Q, Molnar C, Kozel FA, Walker J, 
Anderson B, Koola J, Kose S, Lomarev M, Bohning DE, George MS. Serial 
vagus nerve stimulation functional MRI in treatment-resistant depression. 
Neuropsychopharmacology: official publication of the American College of 
Neuropsychopharmacology. 2007; 32(8):1649-1660.

4.	 Ma J, Qiao P, Li Q, Wang Y, Zhang L, Yan LJ, Cai Z. Vagus nerve stimulation as a 
promising adjunctive treatment for ischemic stroke. Neurochemistry international. 
2019; 131(null):104539.

5.	 Spindler P, Bohlmann K, Straub HB, Vajkoczy P, Schneider UC. Effects of vagus 
nerve stimulation on symptoms of depression in patients with difficult-to-treat 
epilepsy. Seizure. 2019; 69(null) :77-79. 

6.	 Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-
based guideline update: Vagus nerve stimulation for the treatment of epilepsy: 
Report of the Guideline Development Subcommittee of the American Academy 
of Neurology. Neurology. 81(16):1453-1459.

7.	 Howland RH. Vagus Nerve Stimulation. Current Behavioral Neuroscience 
Reports. 2014; 1(2):64-73.

8.	 Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian 
heart. Exp. Physiol. 2008; 93(2):165-176.

9.	 Coote JH. Myths and realities of the cardiac vagus. Journal of Physiology. 2013; 
591(17):4073-85.

10.	 Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac Innervation 
and Sudden Cardiac Death. 2009; 5(4):289-295.

11.	 Ardell JL, Andresen MC, Armour JA, Billman GE, Zucker IH. Translational 
Neurocardiology: preclinical models and cardioneural integrative aspects. J 
Physiol. 2016; 594(14):3877–3909.

12.	 Kawashima T. The autonomic nervous system of the human heart with special 
reference to its origin, course, and peripheral distribution. Anatomy and 
Embryology. 2005; 209(6):425-438.

13.	 Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel 
S, Dobrev D. Cellular and Molecular Mechanisms of Atrial Arrhythmogenesis in 
Patients With Paroxysmal Atrial Fibrillation. Circulation. 2014; 129(2):145-156.

14.	 Landstrom AP, Dobrev D, Wehrens XHT. Calcium signaling and cardiac 
arrhythmias. Circ Res. 2017;120:1969-1993.

15.	 Standish A, Enquist L, Schwaber J. Innervation of the heart and its central 
medullary origin defined by viral tracing. Science. 1994; 263(5144):232-234.

16.	 Standish A, Enquist LW, Escardo JA, Schwaber JS. Central neuronal circuit 
innervating the rat heart defined by transneuronal transport of pseudorabies virus. 
1995; 15(3 Pt 1):1998.

17.	 Hopkins DA, Bieger D, Devente J, Steinbusch WM. Vagal efferent projections: 
Viscerotopy, neurochemistry and effects of vagotomy. 1996; 107(08):79.

18.	 Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza 
DH. Immunohistochemical characterization of the intrinsic cardiac neural plexus 
in whole-mount mouse heart preparations. Heart rhythm. 2011; 8(5):731-738.

innervation to the head, neck, and eyes can cause significant adverse 
effects 91-94.

3.2 Cervical low-level vagus nerve stimulation
Increased sympathetic tone is typical in patients with myocardial 

infarction or heart failure and is an important contributing factor 
to VAs. Preclinical studies demonstrated that VNS can increase 
ventricular electrical stability and protect against VAs during acute 
ischemia and reperfusion in animal models 95-99. Vanoli et al 100 
showed that VNS effectively prevents ventricular fibrillation in 
conscious animals with myocardial infarction. During the repeated 
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