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Introduction
Atrial fibrillation (AF), the most common clinical arrhythmia, 

is a progressive disease.The progression of AF is mirrored by: 1) a 
switch from paroxysmal to persistent AF[1], 2) increased left atrial 
diameter[2],[3] and 3) myocardial regions with non-uniform conduction 
detected as low voltage areas[4]-[6]. Those clinical phenotypes associate 
with worse therapy outcome[7]–[10]. AF progression is underpinned by 
remodeling of myocardial tissue with fibrosis, fatty degeneration and 
loss of physiological structure[11],[12]. While the clinical phenotypes 
mentioned before are mere surrogates of AF progression, the real 
extent of pathophysiological remodeling remains elusive.At present, 
standard histology procedures are the only option to directly 
characterize the remodeling extent. Those procedures involve 
biopsy-sampling and comprehensive sample processing. Sampling 
from human ventricles e.g.for characterization of cardiomyopathy 
is routinely performed and remodeling is then characterized by 
Masson-Trichrome staining which results in red stained muscle 
fibers, blue to green collagen, light red pink cytoplasm, and black cell 
nuclei[13]. Biopsy sampling from the atria for histological examination 
is not recommended as the atrial wall thickness ranges between 1 
and 4 mm[14] making it prone to rupture. Consequently, histological 
characterization of atrial biopsies from patients was only done in pilot 
studies[15]. In addition,traditional histological processing is prone to 

artifacts like shrinkage, geometric distortions, and staining-related 
artifacts[16],[17]. Large cells and structures like adipocytes, myofibrils or 
the extra cellular matrix fiber orientation throughout the myocardial 
wall cannot be assessed together due to slicing in 2-5µm steps.
Summarizing a time efficient and non-invasive method for direct 
visualization of atrial remodeling in vivo would represent a critical 
break through. With our feasibility study, we want to introduce 
nonlinear optical microscopy (NLOM) an immediate, non-
destructive series of techniques based on multiphoton processes[18]. 
We applied coherent anti-Stokes Raman scattering (CARS), 
endogenous two-photon excited fluorescence (TPEF) and second 
harmonic generation (SHG) to inspect unstained slices of human 
atrial appendage myocardium ex vivo. CARS detects methylene 
groups and therefore identifies lipidsand proteins[4], TPEF detects 
endogenous fluorophores like elastin, SHG detects highly ordered 
structures lacking of inversion symmetry like fibrillary collagen and 
myosin[5],[6].

Methods
Patient samples

Left atrial appendage samples were from three patients with 
persistent atrial fibrillation undergoing Cox-MAZE procedure with 
amputation of left atrial appendage at the Heart Center Leipzig. 
Patient 1 was a 49year old female with a BMI of 30 kg/m2. Patient 
2 was a 68 year old femalewith a BMI of 33 kg/m2. Patient 3 
wasa 57 years old male with a BMI of 28 kg/m2. Patients 1 and 2 
hadlong standing AF (>24 months) while patient 3 had AF for 6 
months before surgery. The study was approved by the local ethics 
committee and patients signed an informed consent. The samples 
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Abstract
Atrial fibrillation, characterized by rapid disorganized electrical activation of myocardium, is caused by and accompanied by remodeling 

of myocardial tissue. We applied nonlinear optical microscopy (NLOM) to visualize typical myocardial features and atrial fibrillation effects in 
order to test anon-destructive imaging technology that in principle can be applied in vivo.Coherent anti-Stokes Raman scattering, endogenous 
two-photon excited fluorescence, and second harmonic generation were used to inspect unstained human atrial myocardium from three 
patients who underwent surgical Cox-MAZE procedure with amputation of left atrial appendage. Using NLOM techniques, we collected detail-
rich pictures of unstained tissue that enable comprehensive characterization of myocardial characteristics like myocyte structure, collagen 
and lipofuscin deposition, intercalating disc width, and fatty degradation.

Development of in vivo application of the NLOM technique may represent a revolutionary approach in characterizing atrial fibrillation 
associated myocardial remodeling with important implications for therapy individualization and monitoring.
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were washed in phosphate buffered saline to remove blood, fixed 
in 4% paraformaldehyde, stored at 4°C in the dark, and processed 
within two weeks.
Nonlinear optical microscopy

For NLOM, samples were sliced into stripes of about 1mm and 
placed on glass slides. Drying of the samples during measurements 
was avoided by a drop of phosphate buffered saline. NLOM was 
performed using laser excitation provided by two ultrafast Erbium 
fiber sources with repetition rate of 40 MHz. The pump beam laser 
(Femto Fiber pro NIR from Toptica Photonics AG, Gräfelfing, 
Germany) emitted at 781.5 nm with pulse duration of 1.2 ps. The 
Stokes beam laser used to excite the CARS signal (Femto Fiber pro 
TNIR from Toptica Photonics AG) was set to 1005 nm and had 
pulse duration of 0.8 ps. A multiphoton microscope Axio Examiner 
Z.1 coupled to a scanning module LSM 7 (Carl Zeiss AG, Jena, 
Germany) was used. A water-immersion 20x apochromatic objective 
with numerical aperture NA= 1.00 was used. Pump laser power in the 
sample was 45 mW, Stokes laser power was 0.6 mW. All signals were 
acquired in reflection configuration using non-descanned detection. 
The CARS signal was selected using a band pass filter centered on 
640 nm with bandwidth of 7 nm. The TPEF signal was acquired in 
the spectral range 500–550 nm. The SHG signal was selected with a 
band pass filter centered at 390 nm and bandwidth of 18 nm. 8-bit 
images were simultaneously acquired for CARS, TPEF and SHG, 
and then merged in RGB images by coding CARS in red, TPEF in 
green and SHG in blue. Single field-of view images were acquired 
with pixel dimension of 0.1 µm, pixel dwell time of 0.4 µs, and 8 
averages in order to reduce the noise. For images larger than the 
field of view, a mosaic was produced with tiling procedure followed 
by stitching, using functions embedded in the microscope software 
ZEN (Carl Zeiss AG, Jena, Germany). Z-stacks were acquired in 
order to comply with lack of sample planarity, and maximum intensity 
projections of single tile z-stacks were used to build final images.
Results

A mosaic of an unstained transmural section of left atrial 
appendage myocardium was prepared to demonstrate the potential 
of NLOM techniques[Figure 1]. Endocardium, myocardium and 
epicardium were visualized at once by simultaneously generated 
CARS, endogenous TPEF and SHG signals[Figure 1a]. Detection 
of SHG alone enabled the analysis of disorganized collagen-rich 
structures and provided a detailed overview of the myocardium 
morphologywith an apparent myofibril orientation change in the 
middle of the myocardial wall [Figure 1b] and [Figure 1c]. 

We further more analyzed atrial cardiomyocytes in detail and 
observed striation patterns, cell nuclei(which do not produce intense 
CARS, TPEF or SHG signals whereas they were visible as darker 
oval bodies), intercalated discs, and a massive accumulation of 
fluorescent proteins close to the nuclei[Figure 2]. We focused on 
the intercalated discs[Figure 3] which had an apparent width of 1.0 
µm (median of n = 36, 25% percentile = 0.8µm, 75% percentile = 
1.1µm, min = 0.7 µm, max = 2.3 µm)on the CARS images, without 
significant differences among the analyzed patients. Erythrocytes 
(RBC) localized in small capillaries with diameters of 5-7 µm were 
also identified by CARS [Figure 3]. Atrial myocardial bundles were 
also analyzed in cross section [Figure 4]. We observed thin layers 
of collagen covering the myocyte bundles, peri-nuclear fluorescent 
protein accumulations, collagen fibers and interstitial lipid droplets 
with a size of 14 and 17µm. In [Figure 5] typical features of fibrotic 
remodelingare displayed: increased collagen amount, disorganized 
elastic fibers, endo-myocardial adipocytes with diameters of 70-
100 µm. We finally used SHG microscopy to analyze AF related 

Figure 2:

Analysis of unstained atrial cardiomyocytes from patient 1using 
CARS (red), endogenous TPEF (green) and SHG (blue). Lipofuscin 
close to the nuclei is detected by both CARS and TPEF, resulting in 
mixed image colors. ID: intercalating disk.

Figure 1:

A mosaic of an unstained transmural section of left atrial 
appendage myocardiumfrom patient 2demonstrating the potential 
of NLOM. (a) Endocardium, myocardium and epicardium are 
visualized using CARS (red), endogenous TPEF (green) and SHG 
(blue). (b) Analysis of collagen and myocytes distribution using 
SHG (white). (c) Myofibrils orientation and fibrotic remodeling 
in magnification. The mosaic image was obtained by tiling and 
stitching of 54 single field-of-view images, each obtained from 
maximum intensity projection of 22 image planes 10 µm apart. 
The mosaic image is 3.7 megapixel large. Total acquisition time 
was about 10 min.

pathological cardiomyocyte characteristics (figure 6 b) and a virtually 
intact region [Figure 6a]. Well-defined parallel orientation of 
cardiomyocytes [Figure 6a] was found as well as degenerative breakup 
of structure and increased interstitial space where cardiomyocytes 
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artifacts[16],[17].
With our feasibility study we aimed to demonstrate the potential 

of NLOM technologies in visualization of established physiological 
and pathological myocardial features. We visualized myocardium 

Figure 3:

Visualization of intercalating discs in atrial appendage myocardium 
from patient 3using CARS (red), endogenous TPEF (green) and 
SHG (blue). (a) Image showing the intercalating discs (arrows). 
(b) Same sample as in (a), acquired on a different plane (12 µm 
above), with high magnified details of an intercalating disc. RBC 
= red blood cells.

lost direct contact, and diffuse collagen fiber bundles marked fibrotic 
alterations [Figure 6b].
Discussion

Momentarily, cardiomyocytes and myocardium are characterized 
using fixed thin sample slices which are stained and then visualized 
using light microscopy or confocal microscopy. Another important 
technique enabling very detailed analysis is electron-microscopy[19]. 
All these techniques demand for pre-processing and are prone to 

Figure 4:

Analysis of unstained atrial cardiomyocytesfrom patient 3 in cross 
section using CARS (red), endogenous TPEF (green) and SHG 
(blue). White arrows indicate small capillaries with a diameter of 
5-7 µm.

Figure 5:

Analysis of a transmural section of atrial myocardium from patient 
3showing typical characteristics of fibrotic remodeling using 
CARS (red), endogenous TPEF (green) and SHG (blue). The mosaic 
image was obtained by tiling and stitching of 60 single field-of-
view images, each obtained from maximum intensity projection of 
21 image planes 10 µm apart. The mosaic image is 6.5 megapixels 
large. Total acquisition time was about 18 min.



www.jafib.com Feb-Mar 2018 | Volume 10| Issue 5

Featured ReviewJournal of Atrial Fibrillation Featured ReviewJournal of Atrial Fibrillation4 Original Research
techniques which momentarily enable visualization down to 200 µm 
depth. Indeed NLOM imaging requires sophisticated set up and 
is therefore not yet implemented in clinics. Nevertheless, in-vivo 
application is feasible[27] and development of clinical application in 
cancerous disease of lung, cervix, skin and gastrointestinal system is 
recommended[28]. Several groups already work on miniaturization of 
the technology to transfer it to the clinical application. They report 
the development of a handheld prototype of a miniature multimodal 
CARS microscopefor in vivo imaging[29],[30] as well as fiber-based 
CARS microendoscope[31],[32]. A wearable SHG microscope was 
also presented[33]. With regards to AF SHG might be the most 
promising technology for in vivo imaging offibrotic myocardial 
alterations which are momentarily hardly detectable. Pathological 
low voltage areas in the atria which are detectable during catheter 
examinations[9] are regarded to reflect fibrotic remodeling and 
ablation strategies are already adapted to these findings. We assume 
that the direct visualization of amounts of collagen indicative for 
fibrotic remodeling located in low voltage areas would substantially 
improve the understanding of AF progression. It is not clear whether 
tissue remodeling and low voltage areas colocalize and by which 
extent the atrial myocardial wall is affected when low voltage areas 
are detected. Detailed information could help to further adapt the 
ablation strategy and to monitor the ablation effect.
Limitations

The study is of preliminary character and was done to test the 
suitability of NLOM imaging for cardiac disease involving myocardial 
remodeling. We selected representative images from samples of three 
patients with persistent AF. We neither compared these patients 
with each other or healthy individuals nor did we try to detect novel 
features of pathological alterations. This was beyond the scope of the 
study.	
Conclusion

We show that a combination of the NLOM techniques CARS, 
SHG and TPEF is very suitable to characterize myocardial 
remodeling related to AF at macroscopic and cellular level and is 
at least equal to standard histological characterization without their 
drawbacks. Consequently, ambitious development of in vivo NLOM 
technique represents a revolutionary approach with important 
implications for basic research and individualized therapy.
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