

www. jafib.com

Cryoballoon versus Radiofrequency Ablation for Atrial Fibrillation: A Meta-analysis of 16 Clinical Trials

Jalaj Garg¹, Rahul Chaudhary², Chandrasekar Palaniswamy³, Neeraj Shah¹, Parasuram Krishnamoorthy⁴, Babak Bozorgnia¹, Andrea Natale⁵

¹Division of Cardiology, Lehigh Valley Health Network, Allentown, PA. ²Department of Medicine, Sinai Hospital of Baltimore, Johns Hopkins University, Baltimore, MD. ³Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, NY. ⁴Einstein Healthcare Network, Philadelphia, PA. ⁵Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, TX.

Abstract

Introduction: We aimed to study the procedural characteristics, efficacy and safety of cryoballoon ablation (CBA) versus radiofrequency ablation (RFA) for catheter ablation of paroxysmal atrial fibrillation (AF).

Methods: A systematic literature search was performed using PubMed, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials to clinical trials comparing CBA and RFA for AF. Outcomes were evaluated for efficacy, procedure characteristics and safety. For each study, odd ratio (OR) and 95% confidence intervals (CIs) were calculated for endpoints for both approaches.

Results: We analyzed a total of 9,957 participants (3,369 in the CBA and 6,588 in RFA group) enrolled in 16 clinical trials. No significant difference was observed between CBA and RFA with regards to freedom from atrial arrhythmia at 12-months, recurrent atrial arrhythmias or repeat catheter ablation. CBA group had a significantly higher transient phrenic nerve injury (OR 14.19, 95% CI: 6.92-29.10; p<0.001) and persistent phrenic nerve injury (OR 4.62, 95% CI: 1.97-10.81; p<0.001); and a significantly lower pericardial effusion/cardiac tamponade (OR 0.43, 95% CI: 0.26-0.72; p=0.001), and groin site complications (OR 0.60, 95% CI: 0.38-0.93; p=0.02). No significant difference was observed in overall complications, stroke/thromboembolic events, major bleeding, and minor bleeding.

Conclusion: CBA was non-inferior to RFA for catheter ablation of paroxysmal AF. RF ablation was associated with a higher groin complications and pericardial effusion/cardiac tamponade, whereas CBA was associated with higher rates of transient and persistent phrenic nerve injury.

Introduction

Approximately 2.7 to 6.1 million patients suffer from atrial fibrillation (AF) in USA.¹The incidence rate has been estimated to be approximately 0.4%, which continues to grow with aging population, improvement in medical therapies and longer survival with heart disease.² Since Haïssaguerre's seminal observation identifying pulmonary veins as triggers for AF, there has been a dramatic increase in the number of patients undergoing catheter-based pulmonary vein isolation over the past 15 years.³ In 2012, the Heart Rhythm Society/ European Heart Rhythm Association/ European Cardiac Arrhythmia Society issued a Class I recommendation for catheter ablation in patients with antiarrhythmic refractory symptomatic

Key Words:

Catheter Ablation, Cryoballoon, Radiofrequency, Atrial Fibrillation.

Disclosures: None. Corresponding Author: Jalaj Garg, Division of Cardiology, Lehigh Valley Health Network, 1250 S Cedar Crest Blvd, Allentown, PA 18103.

paroxysmal AF and class IIa recommendation in patients with symptomatic AF prior to initiating antiarrhythmic therapy.⁴ Despite scientific advancements in mapping and catheters for radiofrequency (RF) ablation, data from multicenter registries have shown that only about 75% of patients with paroxysmal AF achieve durable maintenance of sinus rhythm.³ These observations have catalyzed the development of alternative techniques and energy sources for catheter ablation with the aim of simplifying the procedure and improving outcomes. The conventional RF ablation using irrigated catheter has also evolved from its point-by-point approach to circumferential approach and now includes contact-sensing and phased duty-cycled RFA technology. A recent network meta-analysis by Kabunga et al explored the 3 most commonly used AF ablation strategies to compare outcomes of RFA using conventional irrigated catheter, phased duty-cycled RFA, and cryoballoon ablation (CBA). However, since their report, 7 additional prospective and randomized trials have been added to the literature comparing RFA and CBA. We aimed to compare the efficacy, procedural characteristics and complications of both the approaches and provide with the most updated evidence on this topic.

Methods

Process of study selection for randomized and prospective trials Figure 1: (PRISMA Statement)

The present review was performed according to Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.

Search Strategy

We performed electronic searches on PubMed, The Cochrane Library, EMBASE, EBSCO, Web of Science and CINAHL databases from the inception through April 14, 2016 to identify trials comparing RFA and CBA in patients with paroxysmal AF. We combined the terms ("radiofrequency") AND ("cryoballoon" OR "cryoablation") AND ("atrial fibrillation") as keywords or medical subject heading terms. All references of the retrieved articles were reviewed for further identification of potentially relevant studies. The identified studies were systematically assessed using the inclusion and exclusion criteria described below.

Eligibility Criteria

The eligibility criteria for our systematic review and meta-analysis included

	Cryoabl	ation	PEA Odds Patio		Odds Patio	Odds Patio	
Study or Subaroun	Events	Total	Evente	Total	Weight	M-H Random 95% CI	M-H Pandom 95% Cl
1.1.1 Freedom from at	rial arrhyt	hmias	at 12 m	onths	weight	M-II, Randolli, 55% CI	M-1, Kandoli, 55/6 Cl
Hunter et al	57	78	26	77	5.7%	2 28 (1 19 4 26)	
Khouelnzet al	258	311	323	376	11.8%	0.80 [0.53, 1.21]	
Lulk et al	105	156	103	159	9.9%	1 12 [0 70 1 79]	
Munnal et al	86	136	149	260	11.4%	1 28 [0 84 1 96]	
Perez-Castellann et al	12	25	17	25	2.0%	0.43 [0.14 1.37]	
Schmidt et al	269	607	704	1699	28.7%	1.12 [0.93, 1.36]	
Squara et al	111	178	117	198	11.8%	1.15 [0.76, 1.74]	.
Straube et al	76	193	60	180	11.5%	1 30 [0 85 1 98]	
Wasserlauf et al	61	101	61	100	7.2%	0.97 [0.55, 1.72]	
Subtotal (95% CI)		1785		3074	100.0%	1.13 [0.96, 1.33]	◆
Total events	1030		1570				
Heterogeneity: Tau ² = 0	.02; Chi ²	= 10.84	, df = 8	(P = 0.	21); 2 =	26%	
Test for overall effect: Z	= 1.43 (P	= 0.15)				
1.1.2 Recurrent atrial a	rrhythmia						
lourda et al	11	- 75	9	75	2.5%	1 26 (0 49 3 24)	
Knecht et al	37	71	31	71	5.1%	1 40 [0 73 2 72]	
Kuck et al	80	374	87	376	18.7%	0.90 [0.64, 1.28]	
Perez-Castellann et al	13	25	8	25	1 7%	2 30 [0 73 7 27]	
Schmidt et al	278	607	771	1699	63.9%	1.02 [0.84, 1.23]	<u> </u>
Squara et al	34	178	37	196	8.3%	1.01 [0.60, 1.70]	T
Subtotal (95% CI)	51	1330	2.	2442	100.0%	1.03 [0.89, 1.20]	
Total events	453		943				
Heterogeneity: Tau ² = 0	.00; Chi ² -	= 3.47,	df = 5 (P = 0.6	(3); $ ^2 = 0$	%	
Test for overall effect: Z	= 0.40 (P	= 0.69)				
1.1.3 Repeat ablation							
Hunter et al	15	78	16	77	11.3%	0.91 [0.41, 2.00]	
jourda et al	2	75	8	75	3.4%	0.23 [0.05, 1.12]	← → → → → → → → → → → → → → → → → → → →
Kojodjojo et al	17	90	12	53	10.4%	0.80 [0.35, 1.83]	
Kuck et al	7	374	7	376	7.0%	1.01 [0.35, 2.90]	
Lulk et al	31	156	31	159	18.6%	1.02 [0.59, 1.78]	
Perez-Castellano et al	6	25	0	25	1.0%	17.00 [0.90, 320.37]	· · · · ·
Schmidt et al	127	607	399	1699	39.5%	0.86 [0.69, 1.08]	
Straube et al	7	193	15	180	8.8%	0.41 [0.16, 1.04]	
Subtotal (95% CI)		1598		2644	100.0%	0.83 [0.61, 1.12]	-
Total events	212		488				
Heterogeneity: Tau ² = 0	.05; Chi ²	= 9.57,	df = 7 (P = 0.2	(1); $ ^2 = 2$	7%	
Test for overall effect: Z	= 1.22 (P	= 0.22)				
							0 1 0 2 0 5 1 2 5 10
To at fact the second differen	oncos: Chi	2 7 1	1 AF 7	0 0	21.12	3E 09/	Favours (cryoablation) Favours [RFA]

Forest plot demonstrating primary efficacy outcomes in Figure 2: patients with atrial fibrillation undergoing cryoablation versus radiofrequency ablation

1. Human subjects undergoing catheter ablation for paroxysmal AF using conventional RFA, CBA, or phase-duty cycled RFA.

2. Reported clinical outcomes, procedure time and complications.

3. Literature published in English.

4. Either randomized controlled trials (RCTs) or prospective cohort studies. Studies that did not have randomized or matched cohorts were excluded. Retrospective studies, abstracts, case reports, conference presentations, editorials, reviews, and expert opinions were excluded. We used the longest available follow-up data from individual studies for our analysis. All the data was extracted and jadad score calculated independently by 2 reviewers (JG and RC). Discrepancies between the two reviewers were resolved by discussion and consensus. Final results were reviewed by senior investigator (AN) (Figure 1).

Outcomes

The primary efficacy outcome in our study was "freedom from any atrial arrhythmia at 12 months", "recurrent atrial arrhythmias", and "need for repeat ablation". Studies reporting only acute procedural success rates were excluded from efficacy analysis. Secondary procedural outcomes included "procedural time" and "fluoroscopy time".

The primary safety outcome was the combined endpoint of "allcause mortality", "overall complications", "stroke or thromboembolism event", "major bleeding", "minor bleeding", "groin site complications (including arteriovenous fistulae, pseudoaneurysms and hematomas requiring any intervention or prolonged hospital stay)", "transient phrenic nerve injury" (resolved immediate post-procedure), "persistent phrenic nerve injury", "pericardial effusion or cardiac tamponade" (requiring intervention), "atrio-esophageal fistula", and "pulmonary vein stenosis". For analysis, the conventional and duty-phased RFA strategies for ablation were grouped together in the RFA group.

Statistical Analysis

Random effects model was used to estimate the odds ratio (OR) and respective 95% confidence intervals (CI) using Cochrane Collaborative software, RevMan 5.3. Measure of heterogeneity between the studies was assessed using the chi square test and was considered significant if I2>50%. All p values were 2-sided, and p value of <0.05 was considered significant.

Quality Appraisal And Publication Bias

Assessment of risk of bias for each selected study was performed according to PRISMA 2009 guidelines. Qualitative evaluation of bias using the following key parameters were performed for each

	Cryo	ablati	on		RFA			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
3.1.1 Total procedural	time (m	inutes)						
Galta et al	147	32	36	123	45	36	8.8%	0.61 [0.13, 1.08]	
Jourda et al	134.5	48.3	75	110.7	32.5	75	9.2%	0.58 [0.25, 0.90]	
Khouelry et al	132.8	37	311	114.2	33.3	376	9.4%	0.53 [0.38, 0.68]	+
Knecht et al	170	42	71	171	47	71	9.2%	-0.02 [-0.35, 0.31]	
Kojodjojo et al	108	28	90	208	58	53	8.9%	-2.39 [-2.83, -1.95]	
Kuck et al	124.4	39	374	140.9	54.9	376	9.4%	-0.35 [-0.49, -0.20]	+
Mugnal et al	192	49	136	112	58	260	9.3%	1.45 [1.22, 1.68]	
Perez-Castellano et al	215	53	25	173	63	25	8.5%	0.71 [0.14, 1.28]	
Schmidt et al 2013	129	29	33	103	33	33	8.7%	0.83 [0.32, 1.33]	
Squara et al	109.6	40	178	122.5	40.7	198	9.4%	-0.32 [-0.52, -0.12]	
Wasserlauf et al	192.9	44	101	283.7	78	100	9.2%	-1.43 [-1.74, -1.12]	_
Subtotal (95% CI)			1430			1603	100.0%	0.02 [-0.52, 0.55]	-
Heterogeneity: Tau ² = 0	0.78; Chi	² = 45	5.25, c	if = 10	(P < 0.	00001); I ² = 989	6	
Test for overall effect: 2	= 0.06	(P = 0)	95)						
3.1.2 Total fluroscopie	c time (m	ninutes)						
Galta et al	37	18	36	16	14	36	8.8%	1.29 [0.78, 1.80]	
Jourda et al	25.3	9.9	75	21.5	8.5	75	10.0%	0.41 [0.09, 0.73]	
Khouelry et al	26.1	8.7	311	23.8	10.7	376	10.8%	0.23 [0.08, 0.38]	+
Knecht et al	49	30	71	41	30	71	10.0%	0.27 [-0.07, 0.60]	
Kojodjojo et al	27	9	90	62	36	53	9.7%	-1.51[-1.90, -1.13]	
Kuck et al	21.7	13.9	374	16.6	17.8	376	10.8%	0.32 [0.17, 0.46]	+
Mugnal et al	36	14	136	31	17	260	10.6%	0.31[0.10, 0.52]	-
Perez-Castellano et al	45	16	25	45	16	25	8.5%	0.00 [-0.55, 0.55]	
Squara et al	17.6	11	178	19.3	8.2	198	10.6%	-0.18 [-0.38, 0.03]	
Wasserlauf et al	46	22.4	101	73	30.1	100	10.2%	-1.01 [-1.31, -0.72]	<u> </u>
Subtotal (95% CI)			1397			1570	100.0%	0.01 [-0.34, 0.35]	•
Heterogeneity: Tau ² = 0	0.28; Chi	$^{2} = 17$	1.70, c	lf = 9 (F	< 0.0	0001);	$ ^2 = 95\%$		
Test for overall effect: 2	2 = 0.03	(P = 0	97)						
Eavours (cryoablation) Eavours (REA)									
Test for subgroup differences: Chi ² = 0.00, df = 1 (P = 0.97), l ² = 0%									

Forest plot demonstrating procedural outcomes of cryoablation Figure 3: versus radiofrequency ablation

Test for subgroup differences: $Chi^2 = 3.11$, df = 2 (P = 0.21), $I^2 = 35.8\%$

Original Research

Figure 4:

Forest plot demonstrating all-cause mortality in patients with atrial fibrillation undergoing cryoablation versus radiofrequency ablation

study:

- 1. Clear definition of study population.
- 2. Clear definition of outcomes and outcome assessment.
- 3. Independent assessment of outcome parameters.
- 4. Sufficient duration of follow-up.
- 5. Selective loss during follow-up.
- 6. Important confounders and prognostic factors identified.

Evidence of publication bias was investigated visually using funnel plots and analyzed using Egger and Begg methods.

Results

A total of 88 studies were identified after exclusion of duplicate or irrelevant references (Figure 1). After a detailed evaluation of

	Cryoablation		RFA			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
4.1.1 Overall acute con	nplications							
Galta et al	7	36	3	36	2.4%	2.66 [0.63, 11.22]		
Hunter et al	4	78	4	77	2.5%	0.99 [0.24, 4.09]		
jourda et al	14	75	2	75	2.2%	8.58 [1.85, 58.51]		
Knocht of ol	20	71	23	71	9.5%	1.00 [0.35, 1.77]	·	
Kniedinie et al	2	90	2	52	1.5%	0.99 [0.13, 5.13]		
Kurk et al	40	374	51	376	13.6%	0.76 [0.49, 1.19]	·	
Lulk et al	19	156	8	159	5.8%	2 62 [1 11 6 17]	│ <u>──</u> →	
Mugnal et al	26	136	37	260	10.7%	1.42 [0.82, 2.47]		
Perez-Castellano et al	1	25	1	25	0.7%	1.00 [0.06, 16.93]	· · · · · · · · · · · · · · · · · · ·	
Schmidt et al	41	607	151	1699	16.2%	0.74 [0.52, 1.06]		
Schmidt et al 2014	42	905	132	2870	16.3%	1.01 [0.71, 1.44]		
Squara et al	13	178	14	198	6.7%	1.04 [0.47, 2.27]		
Straube et al	17	193	18	180	7.9%	0.87 [0.43, 1.74]		
Wasserlauf et al	3	101	4	100	2.2%	0.73 [0.16, 3.37]	·	
Subtotal (95% CI)		3336		6555	100.0%	1.06 [0.84, 1.34]	-	
Total events	253		455					
Heterogeneity: I au* = 0	005; Chi* =	20.17	, df = 1·	4 (P = (), 12); I* =	- 31%		
Test for overall effect: 2	= 0.49 (P	= 0.62	J					
4.1.2 Groin site compli	cations							
Hunter et al	0	78	1	77	1.9%	0.32 [0.01. 8 10]	·	
lourda et al	ĩ	75	1	75	2.5%	1.00 [0.06, 16 29]	· · · · · · · · · · · · · · · · · · ·	
Knecht et al	ī	71	ž	71	3.3%	0.49 [0.04, 5.56]	· · · · · · · · · · · · · · · · · · ·	
Kuck et al	7	374	16	376	24.0%	0.43 [0.17, 1.06]	· · · · · · · · · · · · · · · · · · ·	
Mugnal et al	2	136	2	260	5.0%	1.93 [0.27, 13.82]		
Perez-Castellano et al	0	25	1	25	1.8%	0.32 [0.01, 8.25]	·	
Schmidt et al 2014	7	905	33	2870	29.0%	0.67 [0.30, 1.52]		
Squara et al	3	178	8	198	10.8%	0.41 [0.11, 1.56]	· · · · · · · · · · · · · · · · · · ·	
Straube et al	7	193	9	180	19.1%	0.72 [0.26, 1.96]		
Wasserlauf et al	1	101	1	100	2.5%	0.99 [0.06, 16.05]	· ,	
Subtotal (95% CI)		2136		4232	100.0%	0.60 [0.38, 0.93]		
Total events	29		/4					
Heterogeneity: I au* = U	000; Chi* =	2.95,	ar = 9 (I	= 0.9	7); 14 = 0	76		
rescior overall effect. z	= 2.20 (F	= 0.02	,					
4.1.4 Stroke/Thrombo	embolism							
Khoueirv et al	1	311	1	376	9.1%	1.21 (0.08, 19, 42)	· · · · · · · · · · · · · · · · · · ·	
Kuck et al	2	374	2	376	18.1%	1.01 [0.14, 7.17]	· · · · · · · · · · · · · · · · · · ·	
Schmidt et al	1	607	6	1699	15.5%	0.47 [0.06, 3.88]	· · ·	
Schmidt et al 2014	3	905	9	2870	40.7%	1.06 [0.29, 3.91]	_	
Squara et al	0	178	2	198	7.5%	0.22 [0.01, 4.62]	*	
Straube et al	1	193	1	180	9.0%	0.93 [0.06, 15.02]	· · · · · · · · · · · · · · · · · · ·	
Subtotal (95% CI)		2568		5699	100.0%	0.82 [0.36, 1.89]		
Total events	8		21					
Heterogeneity: Tau* = C	00; Chi ² =	1.28,	df = 5 (l	P = 0.9	4); $I^2 = 0$	%		
rescior overall effect. z	= 0.47 (P	= 0.64	J					
4.1.5 Major Bleeding								
lourda et al	1	75	2	75	5.1%	0.4910.04.5.561	· · · · · · · · · · · · · · · · · · ·	
Khoueirv et al	7	311	12	376	33.4%	0.70 [0.27, 1.80]		
Schmidt et al	4	607	19	1699	25.5%	0.59 [0.20, 1.73]	· · · · · · · · · · · · · · · · · · ·	
Schmidt et al 2014	5	905	30	2870	33.1%	0.53 [0.20, 1.36]	· · · · · · · · · · · · · · · · · · ·	
Straube et al	0	193	1	180	2.9%	0.31 [0.01, 7.64]	· · · · · · · · · · · · · · · · · · ·	
Subtotal (95% CI)		2091		5200	100.0%	0.58 [0.34, 1.01]		
Total events	17		64					
Heterogeneity: Tau ² = 0	.00; Chi ² =	0.36,	df = 4 (l	P = 0.9	9); $ ^2 = 0$	%		
Test for overall effect: Z	= 1.93 (P	= 0.05)					
416 Minor Bleeding								
Porez, Castellane et al	1	25	0	25	7 99/	2 12 10 12 80 201	·	
Schmidt at al	15	607	70	1699	01.5%	0.59 (0.22, 1.04)	·	
Squara et al	10	178	1	198	2.8%	0.37 [0.01 9.11]		
Wasserlauf et al	ĩ	101	õ	100	2.8%	3 00 10 12 74 531	· · · · · · · · · · · · · · · · · · ·	
Subtotal (95% CI)	-	911	Ŷ	2022	100.0%	0.64 [0.37, 1.10]		
Total events	17		71				_	
Heterogeneity: Tau ² = C	0.00; Chi ² =	2.00,	df = 3 (P = 0.5	7); $I^2 = 0$	%		
Test for overall effect: Z	= 1.63 (P	= 0.10) [`]					
							0.5 0.7 1 1.5 2	
Test for subgroup differ	oncos: Chiz	- 8 7	7 df = 4	(P = 0	07) 12 -	54 4%	Favours [Cryoablation] Favours [RFA]	
rescion subgroup unier	circes. chir	- 0.71	, ui = 4	v = 0		2 1. 178	1	
	Forest	pl	ot d	emo	onstra	ating safety	outcomes - overall acute	

Forest plot demonstrating safety outcomes - overall acute complications, stroke/thromboembolism, major bleeding, Figure 5A: minor bleeding and groin site complications in patients with atrial fibrillation undergoing cryoablation versus radiofrequency ablation these studies, 16 relevant studies were included, that incorporated a total of 9,957 participants (3,369 in the CBA and 6,588 in RFA group) undergoing catheter ablation for paroxysmal AF. Of these, 5 were RCTs⁵⁻⁹ and 11 were prospective observational studies.¹¹⁻²⁰ The characteristics of these trials, mean follow-up periods and mode of arrhythmia detection are described in Table 1.

Quality Assessment And Publication Bias

Overall, there were clear definitions of the study population, outcomes, and assessment in most component studies, but blinded assessment of outcomes was not reported in all studies resulting in potential bias. Jadad score was calculated for all RCTs with a mean Jadad score of 3 indicating that the studies involved were of high quality (Table 1). No significant publication bias was observed using funnel plots (Egger's test and Begg's test had p values >0.05 for all analyses) (Supplementary appendix Table 1, Supplementary appendix, Figure 1).

Baseline Characteristics

In the participant studies, there were no significant differences between the two groups in terms of age, gender, body mass index, left ventricular ejection fraction (LVEF), hypertension or coronary artery disease. A higher prevalence of diabetes was observed (p<0.05)

	Cryoablati	on	RFA Odds Ratio		Odds Ratio	Odds Ratio		
Study or Subgroup	Events T	otal I	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
4.2.1 Transient Phre	nic Nerve Inj	ury						
Hunter et al	4	78	0	77	6.0%	9.36 [0.50, 176.92]		→
Jourda et al	13	75	0	75	6.4%	32.62 [1.90, 559.65]		\rightarrow
Khouelry et al	7	311	1	376	11.7%	8.63 [1.06, 70.57]		
Knecht et al	1	71	0	71	5.0%	3.04 [0.12, 75.96]	· · · · · · · · · · · · · · · · · · ·	-
Kojodjojo et al	2	90	0	53	5.5%	3.02 [0.14, 64.16]	· · · · · · · · · · · · · · · · · · ·	
Kuck et al	9	374	0	376	6.4%	19.57 [1.14, 337.49]		\rightarrow
Luik et al	6	156	0	159	6.2%	13.78 [0.77, 246.68]		\rightarrow
Mugnal et al	11	136	0	260	6.4%	47.74 [2.79, 816.65]		\rightarrow
Schmidt et al	13	607	1	1699	12.4%	37.16 [4.85, 284.68]		\rightarrow
Schmidt et al 2014	18	905	1	2870	12.7%	58.22 [7.76, 436.73]		\rightarrow
Squara et al	10	178	0	198	6.4%	24.74 [1.44, 425.32]		\rightarrow
Straube et al	3	193	1	180	10.0%	2.83 [0.29, 27.42]		
Wasserlauf et al	1	101	0	100	5.0%	3.00 [0.12, 74.53]		-
Subtotal (95% CI)	3	275		6494	100.0%	14.19 [6.92, 29.10]	•	
Total events	98		4					
Heterogeneity: Tau ² =	+ 0.00; Chi² =	9.23,	, df = 1	2 (P =	0.68); l² +	= 0%		
Test for overall effect:	Z = 7.24 (P	< 0.0	0001)					
4.2.2 Unresolved Ph	renic Nerve li	njury						
Galta et al	5	36	0	36	8.4%	12.75 [0.68, 239.67]		\rightarrow
Kuck et al	1	374	0	376	7.0%	3.02 [0.12, 74.47]		-
Luik et al	3	156	0	159	8.2%	7.27 [0.37, 141.98]		
Mugnal et al	2	136	0	260	7.8%	9.68 [0.46, 203.15]		\rightarrow
Schmidt et al	7	607	5	1699	54.5%	3.95 [1.25, 12.50]		
Straube et al	1	193	0	180	7.0%	2.81 [0.11, 69.50]		
Wasserlauf et al	1	101	0	100	7.0%	3.00 [0.12, 74.53]		-
Subtotal (95% CI)	1	603		2810	100.0%	4.62 [1.97, 10.81]		
Total events	20		5					
Heterogeneity. Tau ² =	= 0.00; Chi ² =	1.11,	, df = б	(P = 0	.98); I ² =	0%		
Test for overall effect:	Z = 3.53 (P	= 0.00	004)					
4.2.3 Pericardial Effu	sion/Cardia	c Tam	ponade					
Hunter et al	0	78	1	77	2.6%	0.32 [0.01, 8.10]		
Khouelry et al	1	311	6	376	5.9%	0.20 [0.02, 1.66]		
Knecht et al	1	71	1	71	3.4%	1.00 [0.06, 16.31]		
Kojodjojo et al	1	90	2	53	4.5%	0.29 [0.03, 3.24]		
Kuck et al	1	374	5	376	5.7%	0.20 [0.02, 1.71]		
Lulk et al	2	156	0	159	2.9%	5.16 [0.25, 108.39]		-
Mugnal et al	1	136	4	260	5.5%	0.47 [0.05, 4.28]		
Schmidt et al	3	607	22	1699	18.1%	0.38 [0.11, 1.27]		
Schmidt et al 2014	7	905	37	2870	40.2%	0.60 [0.27, 1.34]		
Squara et al	0	178	2	198	2.9%	0.22 [0.01, 4.62]		
Straube et al	1	193	4	180	5.5%	0.23 [0.03, 2.07]		
Wasserlauf et al	0	101	4	100	3.1%	0.11 [0.01, 1.99]	· · · · · · · · · · · · · · · · · · ·	
Subtotal (95% CI)	3	200		6419	100.0%	0.43 [0.26, 0.72]	•	
Total events	18		88					
Heterogeneity: Tau ² =	= 0.00; Chi ² =	6.11,	, df = 1	1 (P =	0.87); l² =	= 0%		
Test for overall effect:	Z = 3.21 (P	= 0.00	01)					
								100
							Eavours (Cryoablation) Eavours (REA)	100
Test for subgroup diff	'erences: Chi ²	= 66.	14, df	= 2 (P	< 0.0000	 l² = 97.0% 		
	Forest	nl	ot d	hom	onetr	ating safety	outcomes , transient	and
	FUICSL	U UI	υι ι	JEIII	บแอน	aune Salely	vuluumuta * lidiisitiil d	

Figure 5B: Forest plot demonstrating safety outcomes - transient and unresolved phrenic nerve injury, and pericardial effusion/tamponade in patients with atrial fibrillation undergoing cryoablation versus radiofrequency ablation

Characteristics of the included studies

Table 1:

Name of Study	Year	Type of trial	Cryoballoon characteristics		CBA, n	Radiofrequency ch	aracteristics	RFA, n	Follow-up	Mode of follow-up for	Jadad Score
			Generation	Size		Type of RFA	Approach for ablation		duration (mean, months)	arrhythmia detection	
Kuck et al	2016	RCT	CB-1;CB-2	23 and 28 mm	374	C - IRF	point by point	376	18 months	24h Holter monitor	3
Hunter et al	2015	RCT	CB-1	23 and 28 mm	78	C - IRF	point by point	77	12 months	7 day Holter	3
Luik et al	2015	RCT	CB-1	23 and 28 mm	156	C-IRF	NS	159	12 months	7 day Holter or event recorder	3
Pérez- Castellano et al	2014	RCT	CB-1	23 or 28 mm	25	C-IRF	point by point	25	12 months	Insertable cardiac monitor	3
Schmidt et al	2013	RCT	NS	28 mm	33	C-IRF	NS	33	NS	NS	3
Khoueiry et al	2016	P; 0S	CB-1; CB-2	28 mm	311	C-IRF and CS-IRF	Circumferential PVI	376	14 months	24h Holter monitor	NA
Schmidt et al	2016	P; 0S	NS	23 and 28 mm	607	C-IRF	NS	1699	12 months	12 lead ECG	NA
Straube et al	2016	P; 0S	NS	23 and 28 mm	193	C-IRF and CS-IRF	NS	180	17 months	24h Holter monitor	NA
Squara et al	2015	P; 0S	CB-2	23 and 28 mm	178	CF-IRF	Circumferential PVI	198	12 months	24h Holter monitor	NA
W a s s e r l a u f et al	2015	P; 0S	CB-1; CB-2	23 and 28 mm	101	C-IRF	NS	100	12 months	24h to 48h Holter monitor	NA
Jourda et al	2015	P; 0S	CB-2	NS	75	CF-RFA	NS	75	12 months	24h Holter monitor	NA
Knecht et al	2014	P; 0S	CB-1	23 or 28 mm	71	C-IRF	Circumferential PVI	71	28 months	7 day Holter	NA
Mugnai et al	2014	P; 0S	CB-1	28 mm	136	C-IRF	Circumferential PVI	260	23 months	24h Holter monitor	NA
Schmidt et al	2014	P; 0S	NS	23 or 28 mm	905	C-IRF	NS	2870	NS	NS	NA
Gaita et al	2011	P; 0S	CB-1	23 or 28 mm	36	C-IRF	point by point	36	NS	NS	NA
Kojodjojo et al	2010	P; 0S	CB-1	28 mm	90	C-IRF	Circumferential PVI	53	14 months	24h Holter monitor	NA

CBA= Cryoballoon ablation; RFA= Radiofrequency ablation; RCT=Randomized Controlled trial; P;OS = Prospective Observational Study; CB-1 = Cryoballoon 1st generation; CB-2= Cryoballoon 2nd generation; NS=Not specified; C-IRF= Conventional Irrigated Radiofrequency catheter; PRF= Duty-cycled phased radiofrequency; CS-IRF=contact sensing-radiofrequency; PVI=Pulmonary Vein Isolation

in CBA group whereas left atrial diameter (LAD) and stroke or thromboembolic events were significantly greater in patients with RFA group. No significant heterogeneity was observed for stroke and diabetes. However, a significant heterogeneity was observed in LAD (Table 2). On sub-analysis of LAD only in prospective trials, the standard mean difference was found to be -0.13 (95% CI -0.26 to -0.001; p=0.04) with no significant heterogeneity (I²=1.05).

Assessment of Efficacy

Figure 2:

ablation

The clinical outcomes were assessed off anti-arrhythmic therapy in 7 trials,^{5-8,14-16} on anti-arrhythmic therapy in 4 trials^{10-12,18} and this information was not available for 5 trials.^{9,13,17,19,20} No significant difference was observed between CBA and RFA in freedom from

	Cryoabla	ation	RFA			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 Freedom from at	rial arrhyt	hmias a	at 12 mo	nths			
Hunter et al	52	78	36	77	35.9%	2.28 [1.19, 4.36]	
Lulk et al	105	156	103	159	41.3%	1.12 [0.70, 1.79]	_ +
Perez-Castellano et al	12	25	17	25	22.7%	0.43 [0.14, 1.37]	
Subtotal (95% CI)		259		261	100.0%	1.16 [0.55, 2.46]	
Total events	169		156				
Heterogeneity: Tau ² = 0).29; Chi ² :	= 6.73,	df = 2 (F	P = 0.0	13); 1 ² = 7	0%	
Test for overall effect: Z	= 0.40 (P	= 0.69)				
1.1.2 Recurrent atrial a	rrhythmia						
Kuck et al	80	374	87	376	67.9%	0.90 [0.64, 1.28]	
Perez-Castellano et al	13	25	8	25	32.1%	2.30 [0.73, 7.27]	
Subtotal (95% CI)		399		401	100.0%	1.22 [0.52, 2.87]	
l otal events	93		95				
Heterogeneity: Tau ² = 0).25; Chi*	= 2.33,	df = 1 (F	° = 0.1	.3); l* = 5	7%	
Test for overall effect: Z	= 0.46 (P	= 0.65)				
1.1.3 Repeat ablation							
Hunter et al	15	78	16	77	30.1%	0.91 [0.41, 2.00]	
Kuck et al	7	374	7	376	18.7%	1.01 [0.35, 2.90]	
Lulk et al	31	156	31	159	48.4%	1.02 [0.59, 1.78]	
Perez-Castellano et al	6	25	0	25	2.8%	17.00 [0.90, 320.37]	
Subtotal (95% CI)		633		637	100.0%	1.06 [0.65, 1.75]	-
Total events	59		54				
Heterogeneity: Tau ² = 0).05; Chi² :	= 3.71,	df = 3 (F	P = 0.2	(9); $ ^2 = 1$	9%	
Test for overall effect: Z	= 0.25 (P	= 0.80)				
							Favours [cryoablation] Favours [RFA]
Test for subgroup differ	ences: Chi	^c = 0.05	9, df = 2	(P = 0	.96), 1² =	0%	
	_						
	Fo	rest	plo	ot	demo	onstrating p	rimary efficacy endpoints
<u> </u>			1.1				
Supplementa	ry (ra	indo	mize	ac	ontro	olied trials o	niy) in patients with atrial

www.jafib.com

fibrillation undergoing cryoablation versus radiofrequency

Table 2:	Baseline demographics of study population								
Baseline Characteristic	СВА	RFA	N	Studies (n)	RR or SWD (95% CI)	Heterogeneity		P for overall effect	
						P value	l² (%)		
Age, yrs	59.2	60.1	3,138	11	-0.08 (-0.19 to 0.03)	0.01	53.3	0.14	
Males, %	70.3%	70.5%	6,411	15	0.99 (0.97 to 1.03)	0.53	0	0.91	
BMI	27.0	26.7	2,125	5	0.05 (-0.12 to 0.22)	0.007	71.6	0.58	
LVEF, %	60.6%	60.0%	1,687	7	0.04 (-0.12 to 0.21)	0.02	57.8	0.58	
LAD, mm	40.4	41.1	5,315	7	-0.18(-0.32 to -0.05)	0.01	61.6	0.008	
Stroke/TIA, %	4.9%	7.7%	502	10	0.77 (0.63 to 0.93)	0.61	0	0.008	
Hypertension, %	46.8%	48.1%	5,337	16	0.96 (0.90 to 1.03)	0.02	44.9	0.24	
Diabetes, %	7.4%	6.5%	718	14	1.17 (1.01 to 1.36)	0.58	0	0.04	
CAD, %	11.9%	13.6%	1,219	8	0.93 (0.82 to 1.04)	0.6	0	0.21	

CBA=Cryoballoon ablation; RFA=Radiofrequency Ablation; RR=Relative Risk; SWD=Standardized Mean Difference; LVEF= Left Ventricular Ejection Fraction; BMI=Body-mass index; LAD= Left atrial diameter; TIA=Transient Ischemic Attack; CAD=Coronary artery disease

atrial arrhythmia at 12-months follow-up (OR 1.13; 95% confidence interval [CI]: 0.96-1.33), recurrent atrial arrhythmias (OR 1.03; 95% CI 0.89-1.20) or repeat ablation (OR 0.83; 95% CI 0.61-1.12) (Figure 2). No significant heterogeneity was observed.

Assessment of Procedural Duration

The total procedure time was not significantly different between CBA and RFA groups (Standard mean difference [SMD] 0.02, 95% CI -0.52 to 0.55; I²=98%). Similarly, the total fluoroscopy time was not significantly different between the two groups (SMD 0.01, 95%) CI -0.34 to 0.35; I²=95%) (Figure 3). Significant heterogeneity was observed in both these measures.

Assessment of Safety and Complications

The all-cause mortality (OR 0.99, 95% CI 0.07-14.75; I²=55%) for CBA and RFA respectively, Figure 4) and overall complications (7.5% vs. 6.9% for CBA and RFA respectively, (OR 1.06, 95% CI 0.84-1.34; I²=31%) p=0.62; Figure 5a) were not significantly different. Among individual complications, CBA group had significantly lower groin site complications (1.35% vs. 1.74%, p=0.02; OR 0.60, 95% CI 0.38 - 0.93) and lower hemodynamically significant pericardial effusion/cardiac tamponade (0.56% vs. 1.37%, p=0.001), as compared to RFA respectively, higher rates of transient phrenic nerve injury (3% vs. 0.06%, p<0.001; OR 14.19, 95% CI 6.92-29.10) and persistent phrenic nerve injury (1.24% vs. 0.17%, p<0.001; OR 4.62, 95% CI 1.97-10.81) a for CBA and RFA respectively. No significant difference was observed in stroke/thromboembolic events, major bleeding, and minor bleeding (Figure 5a and b). There were no reports of atrio-esophageal fistula or pulmonary vein stenosis.

Analysis of Data from Randomized Controlled Trials Only

Assessment of Efficacy

Forest plot demonstrating procedural outcomes (randomized Supplementary controlled trials only) in patients with atrial fibrillation undergoing cryoablation versus radiofrequency ablation

Cryoablation and Radiofrequency ablation had comparable rates of freedom from atrial arrhythmia (OR: 1.16, 95% CI: 0.55-2.46; I²=70%), recurrent atrial arrhythmias (OR: 1.22, 95% CI: 0.52-2.87; I²=57%) and need for a repeat ablation (OR: 1.06, 95% CI: 0.65-1.75; I²=19) (Supplementary appendix, Figure 2).

Assessment of Procedural Duration

Cryoablation group was associated with increased total fluoroscopy time (Standard mean difference 0.28, 95% CI: 0.06 - 0.49; I²=16%) and similar total procedural time (Standard mean difference: 0.37; 95% CI: -0.52 - 1.26; I²=93%) compared to RFA group (Supplementary appendix, Figure 3).

Assessment of Safety and Complications

The overall complications were similar in both the groups (10.11%)

Supplementary Figure 4:

Forest plot demonstrating safety outcomes (randomized controlled trials only) - overall acute complications, groin site complications, transient and unresolved phrenic nerve injury and pericardial effusion/tamponade in patients with atrial fibrillation undergoing cryoablation versus radiofrequency ablation

Figure 3:

Supplementary Figure 5: Forest plot demonstrating primary efficacy endpoints in studies evaluating 2nd generation CBA catheter versus contact-sensing RFA catheter

versus 10.04%; OR: 1.19, 95% CI 0.57-2.52). Among individual complications, CBA group had significantly lower groin site complications (1.46% versus 3.76% for RFA group; OR: 0.41, 95% CI 0.18 – 0.95) and higher rates of transient phrenic nerve injury (3.1% versus 0 events in RFA group; OR 13.72, 95% CI 2.59 – 72.78) compared to RFA group. No significant difference was observed in unresolved phrenic nerve injury and significant pericardial effusion/ cardiac tamponade between the two groups (Supplementary appendix, Figure 4).

Analysis of Data from Trials Evaluating 2nd Generation CBA and Contact-Force RFA

In the sub-analysis, evaluating 2^{nd} generation CBA (CBA-2) and RFA using contact force-sensing (CF-RFA) catheters, only 2 trials were included.^{13,15} In these trials both groups had comparable rates of recurrent atrial arrhythmias (17.8% versus 17%; OR 1.07, 95% CI 0.68 – 1.68) (appendix, Figure 5).

Cryoablation was associated with similar total procedural time (Standard mean difference: 0.12; 95% CI: -0.76 - 0.99; I²=95%) and total fluoroscopy time (Standard mean difference: 0.10; 95% CI: -0.47 - 0.68; I²=89%) as RFA (Supplementary appendix, Figure 6).

The overall complications were similar in both the groups (10.6% versus 5.8%; OR 2.66, 95% CI 0.33 – 21.23, I²=83%). CBA group (2^{nd} generation) had higher rates of transient phrenic nerve injury (9% versus 0 events in RFA group; OR 28.04, 95% CI 3.75 – 209.32) as compare to RFA group. No difference was observed in groin site complications (1.6% versus 3.2%; OR 0.48, 95% CI 0.14 – 1.62) between the two groups (Supplementary appendix, Figure 7).

Discussion

To the best of our knowledge, this is the largest meta-analysis of prospective and RCTs comparing the overall efficacy, safety and procedural characteristics of CBA with RFA in patients with paroxysmal AF. Our analysis suggests that CBA and RFA do not differ in terms of efficacy, procedural times, and overall complications. However, the analysis of individual complications demonstrated increased incidence of transient and persistent phrenic nerve injury and reduced hemodynamically significant pericardial effusion/cardiac tamponade and groin site complications with CBA as compared to RFA. No significant difference was observed in rates of major and minor bleeding and stroke/thromboembolic events. Interestingly there were no reports of atrio-esophageal fistula and pulmonary vein stenosis in both groups.

Freedom from Atrial Arrhythmia

Our study demonstrated no difference between CBA and RFA in rates of freedom from atrial arrhythmias at 12 months follow-up, recurrent atrial arrhythmias and repeat ablations. Traditionally, pointby-point ablation is expected to have gaps in ablation lines and hence more recurrence compared to the "single-shot" approach offered by CBA.²¹ Improved outcomes have been reported with RFA since the introduction of contact force-sensing catheter technology.²² However, this modality was not used consistently in our component studies and pooled together with traditional RFA (Table 1). Hanninen et al have previously reported a higher incidence of recurrent arrhythmia with CBA compared to RFA, especially atrioventricular nodal reentrant tachycardia.23 There have been two prior meta-analyses on this subject by Xu et al²⁴ and Kabunga et al.²⁵ We only included prospective and RCTs in our analysis as opposed to the prior metaanalyses, and incorporated data from 7 additional contemporary trials since the last meta-analysis. Our data did not detect any evidence of superiority in efficacy with either of the two modalities. Even after restricting the analysis to RCTs, no difference in the primary efficacy

Supplementary Figure 6: Forest plot demonstrating procedural outcomes in studies evaluating 2nd generation CBA catheter versus contact-sensing RFA catheter

Supplementary Figure 7: Forest plot demonstrating safety outcomes – overall acute complications, groin site complications and transient phrenic nerve injury in studies evaluating 2nd generation CBA catheter and contact-sensing RFA catheter

endpoints was observed between the two groups. Subgroup-analysis comparing the 2nd generation CBA with contact force-sensing RFA also demonstrated no significant difference in the primary efficacy end-points between the two groups (although results should be interpreted with caution in view of only 2 trials).

Procedural Characteristics

Contrary to the findings from prior meta-analyses by Xu et al²⁴ and Kabunga et al,²⁵ we found no significant difference in procedural characteristics including total procedural duration and fluoroscopy time. However, this needs to be interpreted with caution as a significant heterogeneity was observed in both these outcomes. The grouping of different techniques of RFA and different generations of CBA catheters could be a possible contributor to the significant heterogeneity observed in the participant studies.

Upon separate analysis of only the RCTs, there was reduced total fluoroscopic times in RFA group as compared to CBA group with no significant heterogeneity. The longer fluoroscopy times may be related to the impact of a learning curve for CBA. A steep learning curve with CBA has been shown in a large single center study even at a later stage in well-experienced center.²⁶ In the trials comparing only 2nd generation CBA catheters with contact-sense RFA catheters, no difference was observed, although significant heterogeneity persisted. This could possibly be due to local variations in experience and varied preferences in ablation technique.

Secondary Safety Outcomes and Associated Complications

Overall complications rate observed was similar to registry data previously reported by Deshmukh et al²⁷ and Cappato et al.³ Although no significant difference in overall complications was observed between the two groups, it is imperative to discuss the pattern of individual complications observed with the two approaches. Higher incidence of groin-site complications were seen with RFA as compared to CBA with the effect persisting in the sub-analysis with RCTs. This can potentially be explained by increased groin injuries, which may be caused by the two-sheath system often used with RFA (a radiofrequency catheter and a separate mapping catheter).^{28,29} Unfortunately, the included studies did not mention the number of sheaths used during the procedure to better quantify the role of this effect.

Additionally an increased incidence of hemodynamically significant pericardial effusion/cardiac tamponade was observed in the RFA group. However no difference was observed in the

Supplement Table 1:	Summary of Egger's and Begg's test for publication bias							
CBA versus RFA		Egger's test p-value	Begg's test p-value					
Freedom from atria	l fibrillation	0.83	1.00					
Recurrent atrial arr	hythmia	0.12	0.06					
Repeat ablation		0.97	0.71					
Overall complicatio	ons	0.09	0.48					

P value of <0.05 indicates publication bias

subgroup analysis for RCTs only. A total of 12 trials reported this complication^{5-7,10,11,13,14,16-18,20} of which 3 were RCT's.⁵⁻⁷ Number of transeptal punctures is a major factor contributing to development of cardiac tamponade or significant pericardial effusion.³⁰ In 6 trials, the use of a single or double transeptal puncture was not specified^{5,7,11,13,14,18} a double transeptal puncture approach was performed in 2 trials^{16,20} and a single transeptal puncture for CBA and double for RFA was performed in 4 trials.^{6,10,12,17} The use of double transeptal puncture approach with RFA could have likely contributed to an increased incidence of cardiac tamponade in this group. However similar results were not observed in the subgroup analysis (RCT's only). This could be potentially due to the use of double transeptal approach in majority patients in both CBA and RFA groups (although this was not specified in the RCTs).

Cryoablation was predominantly complicated by transient and unresolved phrenic nerve injury. One of the potential reasons for this association could be from the forward pressure exerted during CBA with the sheath for achieving a satisfactory circumferential seal around the target pulmonary vein. This motion likely pushes the atrium closer to surrounding structures including the phrenic nerve. Majority of phrenic nerve injuries were transient and spontaneously resolved with progression of approximately 1.3% injuries to persistent phrenic nerve injury at 12 months.^{31,32}

Study Limitations

Potential sources of bias in our study include combination of 1st and 2nd generation CBA catheters into one group and different approaches of RFA in a single group (irrigated catheters, contact force-sensing catheters and duty-cycled phased RFA) and inclusion of data from prospective non-randomized trials. Additionally, there was a lack of uniformity in the participant trials in protocol for detection of recurrent AF; specifically, the follow-up periods, mode of arrhythmia detection, inclusion of patients on anti-arrhythmic therapy for assessment of efficacy outcomes. We tried to eliminate some of these biases by performing a sub-analysis of RCTs, which demonstrated results similar to original analysis with both groups showing similar efficacy, procedural characteristics, and complications profile.

Conclusions

Our analysis demonstrates that the two technologies for catheter ablation of AF are equivalent in efficacy, procedural characteristics and overall complications with higher rates of groin site complications and significant pericardial effusion/cardiac tamponade in the RFA group and phrenic nerve injury in the CBA group. Based on these data, we believe that currently, there is insufficient evidence to suggest superiority of one ablation strategy over the other for pulmonary vein isolation. Our study highlights the need for better technologies that would help us achieve a more efficient and durable pulmonary vein isolation.

References

1. January Craig T, WannL Samuel, AlpertJoseph S, CalkinsHugh, CigarroaJoaquin

E, ClevelandJoseph C, ContiJamie B, EllinorPatrick T, EzekowitzMichael D, FieldMichael E, MurrayKatherine T, SaccoRalph L, StevensonWilliam G, TchouPatrick J, TracyCynthia M, YancyClyde W. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014;64 (21):e1–76.

- Colilla Susan, CrowAnn, PetkunWilliam, SingerDaniel E, SimonTeresa, LiuXianchen. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am. J. Cardiol. 2013;112 (8):1142–7.
- Cappato Riccardo, CalkinsHugh, ChenShih-Ann, DaviesWyn, IesakaYoshito, KalmanJonathan, KimYou-Ho, KleinGeorge, NataleAndrea, PackerDouglas, SkanesAllan, AmbrogiFederico, BiganzoliElia. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3 (1):32–8.
- 4. Calkins Hugh, KuckKarl Heinz, CappatoRiccardo, BrugadaJosep, CammA John, ChenShih-Ann, CrijnsHarry J G, DamianoRalph J, DaviesD Wyn, DiMarcoJohn, EdgertonJames, EllenbogenKenneth, EzekowitzMichael D, HainesDavid E, HaissaguerreMichel, HindricksGerhard, IesakaYoshito, JackmanWarren, JalifeJose, JaisPierre, KalmanJonathan, KeaneDavid, KimYoung-Hoon, KirchhofPaulus, KleinGeorge, KottkampHans, KumagaiKoichiro, LindsayBruce D, MansourMoussa, MarchlinskiFrancis E, McCarthyPatrick M, MontJ Lluis, MoradyFred, NademaneeKoonlawee, NakagawaHiroshi, NataleAndrea, NattelStanley, PackerDouglas L, PapponeCarlo, PrystowskyEric, RavieleAntonio, ReddyVivek, RuskinJeremy N, SheminRichard J, TsaoHsuan-Ming, WilberDavid. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace. 2012;14 (4):528–606.
- Kuck Karl-Heinz, BrugadaJosep, FürnkranzAlexander, MetznerAndreas, OuyangFeifan, ChunK R Julian, ElvanArif, ArentzThomas, BestehornKurt, PocockStuart J, AlbenqueJean-Paul, TondoClaudio. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2016;374 (23):2235–45.
- 6. Hunter Ross J, BakerVictoria, FinlayMalcolm C, DuncanEdward R, LovellMatthew J, TayebjeeMuzahir H, UllahWaqas, SiddiquiM Shoaib, McLEANAilsa, RichmondLaura, KirkbyClaire, GinksMatthew R, DhinojaMehul, SportonSimon, EarleyMark J, SchillingRichard J. Point-by-Point Radiofrequency Ablation Versus the Cryoballoon or a Novel Combined Approach: A Randomized Trial Comparing 3 Methods of Pulmonary Vein Isolation for Paroxysmal Atrial Fibrillation (The Cryo Versus RF Trial). J. Cardiovasc. Electrophysiol. 2015;26 (12):1307–14.
- Luik Armin, RadzewitzAndrea, KieserMeinhard, WalterMarlene, BramlagePeter, HörmannPatrick, SchmidtKerstin, HornNicolas, Brinkmeier-TheofanopoulouMaria, KunzmannKevin, RiexingerTobias, SchymikGerhard, MerkelMatthias, SchmittClaus. Cryoballoon Versus Open Irrigated Radiofrequency Ablation in Patients With Paroxysmal Atrial Fibrillation: The Prospective, Randomized, Controlled, Noninferiority FreezeAF Study. Circulation. 2015;132 (14):1311–9.
- Pérez-Castellano Nicasio, Fernández-CavazosRoberto, MorenoJavier, CañadasVictoria, CondeAsunción, González-FerrerJuan J, MacayaCarlos, Pérez-VillacastínJulián. The COR trial: a randomized study with continuous rhythm monitoring to compare the efficacy of cryoenergy and radiofrequency for pulmonary vein isolation. Heart Rhythm. 2014;11 (1):8–14.
- 9. Schmidt Boris, GunawardeneMelanie, KriegDetlef, BordignonStefano, FürnkranzAlexander, KulikogluMehmet, HerrmannWilfried, ChunK R Julian. A prospective randomized single-center study on the risk of asymptomatic cerebral lesions comparing irrigated radiofrequency current ablation with the cryoballoon

Original Research

and the laser balloon. J. Cardiovasc. Electrophysiol. 2013;24 (8):869–74.

- Khoueiry Z, AlbenqueJ-P, ProvidenciaR, CombesS, CombesN, JourdaF, SousaP A, CardinC, PasquieJ-L, CungT T, MassinF, MarijonE, BovedaS. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy. Europace. 2016;18 (9):1343–51.
- 11. Schmidt Martin, DorwarthUwe, AndresenDietrich, BrachmannJohannes, KuckKarlheinz, KunissMalte, WillemsStephan, DenekeThomas, TebbenjohannsJürgen, Gerds-LiJin-Hong, SpitzerStefan, SengesJochen, HochadelMatthias, HoffmannEllen. German ablation registry: Cryoballoon vs. radiofrequency ablation in paroxysmal atrial fibrillation--One-year outcome data. Heart Rhythm. 2016;13 (4):836–44.
- 12. Straube Florian, DorwarthUwe, Ammar-BuschSonia, PeterTimo, NoelkerGeorg, MassaThomas, KunissMalte, EwertsenNiels Christian, ChunKyoung Ryul Julian, TebbenjohannsJuergen, TilzRoland, KuckKarl Heinz, OuarrakTaoufik, SengesJochen, HoffmannEllen. First-line catheter ablation of paroxysmal atrial fibrillation: outcome of radiofrequency vs. cryoballoon pulmonary vein isolation. Europace. 2016;18 (3):368–75.
- 13. Squara Fabien, ZhaoAlexandre, MarijonEloi, LatcuDecebal Gabriel, ProvidenciaRui, Di GiovanniGiacomo, JauvertGaël, JourdaFrancois, ChierchiaGian-Battista, De AsmundisCarlo, CiconteGiuseppe, AlonsoChristine, GrimardCaroline, BovedaSerge, CauchemezBruno, SaoudiNadir, BrugadaPedro, AlbenqueJean-Paul, ThomasOlivier. Comparison between radiofrequency with contact force-sensing and second-generation cryoballoon for paroxysmal atrial fibrillation catheter ablation: a multicentre European evaluation. Europace. 2015;17 (5):718–24.
- 14. Wasserlauf Jeremiah, PelchovitzDaniel J, RhynerJohn, VermaNishant, BohnMartha, LiZhi, AroraRishi, ChicosAlexandru B, GoldbergerJeffrey J, KimSusan S, LinAlbert C, KnightBradley P, PassmanRod S. Cryoballoon versus radiofrequency catheter ablation for paroxysmal atrial fibrillation. Pacing Clin Electrophysiol. 2015;38 (4):483–9.
- 15. Jourda François, ProvidenciaRui, MarijonEloi, BouzemanAbdeslam, HirecheHassiba, KhoueiryZiad, CardinChristelle, CombesNicolas, CombesStéphane, BovedaSerge, AlbenqueJean-Paul. Contact-force guided radiofrequency vs. second-generation balloon cryotherapy for pulmonary vein isolation in patients with paroxysmal atrial fibrillation-a prospective evaluation. Europace. 2015;17 (2):225–31.
- 16. Knecht Sven, SticherlingChristian, von FeltenStefanie, ConenDavid, SchaerBeat, AmmannPeter, AltmannDavid, OsswaldStefan, KühneMichael. Long-term comparison of cryoballoon and radiofrequency ablation of paroxysmal atrial fibrillation: a propensity score matched analysis. Int. J. Cardiol. 2014;176 (3):645– 50.
- 17. Mugnai Giacomo, ChierchiaGian-Battista, de AsmundisCarlo, Sieira-MoretJuan, ConteGiulio, CapulziniLucio, WautersKristel, Rodriguez-MañeroMoises, Di GiovanniGiacomo, BaltogiannisGiannis, CiconteGiuseppe, SaitohYukio, JuliáJusto, BrugadaPedro. Comparison of pulmonary vein isolation using cryoballoon versus conventional radiofrequency for paroxysmal atrial fibrillation. Am. J. Cardiol. 2014;113 (9):1509–13.
- 18. Schmidt Martin, DorwarthUwe, AndresenDietrich, BrachmannJohannes, KuckKarl-Heinz, KunissMalte, LewalterThorsten, SpitzerStefan, WillemsStephan, SengesJochen, JüngerClaus, HoffmannEllen. Cryoballoon versus RF ablation in paroxysmal atrial fibrillation: results from the German Ablation Registry. J. Cardiovasc. Electrophysiol. 2014;25 (1):1–7.
- 19. Gaita Fiorenzo, LeclercqJean François, SchumacherBurghard, ScaglioneMarco, TosoElisabetta, HalimiFranck, SchadeAnja, FroehnerSteffen, ZieglerVolker, SergiDomenico, CesaraniFederico, BlandinoAlessandro. Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon. J. Cardiovasc. Electrophysiol. 2011;22

Original Research

(9):961-8.

- 20. Kojodjojo Pipin, O'NeillMark D, LimPhang Boon, Malcolm-LawesLouisa, WhinnettZachary I, SalukheTushar V, LintonNicholas W, LefroyDavid, MasonAnthony, WrightIan, PetersNicholas S, KanagaratnamPrapa, DaviesD Wyn. Pulmonary venous isolation by antral ablation with a large cryoballoon for treatment of paroxysmal and persistent atrial fibrillation: medium-term outcomes and non-randomised comparison with pulmonary venous isolation by radiofrequency ablation. Heart. 2010;96 (17):1379–84.
- 21. Chae Sanders, OralHakan, GoodEric, DeySujoya, WimmerAlan, CrawfordThomas, WellsDarryl, SarrazinJean-Francois, ChalfounNagib, KuhneMichael, FortinoJackie, HuetherElizabeth, LemerandTammy, PelosiFrank, BogunFrank, MoradyFred, ChughAman. Atrial tachycardia after circumferential pulmonary vein ablation of atrial fibrillation: mechanistic insights, results of catheter ablation, and risk factors for recurrence. J. Am. Coll. Cardiol. 2007;50 (18):1781–7.
- 22. Jarman Julian W E, PanikkerSandeep, DASMoloy, WynnGareth J, UllahWaqas, KontogeorgisAndrianos, HaldarShouvik K, PatelPreya J, HussainWajid, MarkidesVias, GuptaDhiraj, SchillingRichard J, WongTom. Relationship between contact force sensing technology and medium-term outcome of atrial fibrillation ablation: a multicenter study of 600 patients. J. Cardiovasc. Electrophysiol. 2015;26 (4):378–84.
- Hanninen Mikael, Yeung-Lai-WahNicole, MasselDavid, GulaLorne J, SkanesAllan C, YeeRaymond, KleinGeorge J, ManlucuJaimie, Leong-SitPeter. Cryoablation versus RF ablation for AVNRT: A meta-analysis and systematic review. J. Cardiovasc. Electrophysiol. 2013;24 (12):1354–60.
- 24. Xu Junxia, HuangYingqun, CaiHongbin, QiYue, JiaNan, ShenWeifeng, LinJinxiu, PengFeng, NiuWenquan. Is cryoballoon ablation preferable to radiofrequency ablation for treatment of atrial fibrillation by pulmonary vein isolation? A metaanalysis. PLoS ONE. 2014;9 (2):e90323.
- Kabunga P, PhanK, HaH, SyRW. Meta-analysis of contemporary atrial fibrillation ablation strategiesirrigated radiofrequency versus duty-cycled phased radiofrequency versus cryoballoon ablation. JACC: Clinical Electrophysiology. 2016.
- 26. Vogt Jürgen, HeintzeJohannes, GutlebenKlaus J, MunteanBogdan, HorstkotteDieter, NölkerGeorg. Long-term outcomes after cryoballoon pulmonary vein isolation: results from a prospective study in 605 patients. J. Am. Coll. Cardiol. 2013;61 (16):1707–12.
- 27. Deshmukh Abhishek, PatelNileshkumar J, PantSadip, ShahNeeraj, ChothaniAnkit, MehtaKathan, GroverPeeyush, SinghVikas, VallurupalliSrikanth, SavaniGhanshyambhai T, BadhekaApurva, TulianiTushar, DabhadkarKaustubh, DibuGeorge, ReddyY Madhu, SewaniAsif, KowalskiMarcin, MitraniRaul, PaydakHakan, Viles-GonzalezJuan F. In-hospital complications associated with catheter ablation of atrial fibrillation in the United States between 2000 and 2010: analysis of 93 801 procedures. Circulation. 2013;128 (19):2104–12.
- 28. Calkins Hugh, KuckKarl Heinz, CappatoRiccardo, BrugadaJosep, CammA John, ChenShih-Ann, CrijnsHarry J G, DamianoRalph J, DaviesD Wyn, DiMarcoJohn, EdgertonJames, EllenbogenKenneth, EzekowitzMichael D, HainesDavid E, HaissaguerreMichel, HindricksGerhard, IesakaYoshito, JackmanWarren, JalifeJosé, JaisPierre, KalmanJonathan, KeaneDavid, KimYoung-Hoon, KirchhofPaulus, KleinGeorge, KottkampHans, KumagaiKoichiro, LindsayBruce D, MansourMoussa, MarchlinskiFrancis E, McCarthyPatrick M, MontJ Lluis, MoradyFred, NademaneeKoonlawee, NakagawaHiroshi, NataleAndrea, NattelStanley, PackerDouglas L, PapponeCarlo, PrystowskyEric, RavieleAntonio, ReddyVivek, RuskinJeremy N, SheminRichard J, TsaoHsuan-Ming, WilberDavid. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS)

Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. 2012;9 (4):632–696.e21.

- 29. Wilber David J, PapponeCarlo, NeuzilPetr, De PaolaAngelo, MarchlinskiFrank, NataleAndrea, MacleLaurent, DaoudEmile G, CalkinsHugh, HallBurr, ReddyVivek, AugelloGiuseppe, ReynoldsMatthew R, VinekarChandan, LiuChristine Y, BerryScott M, BerryDonald A. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303 (4):333–40.
- 30. De Ponti Roberto, CappatoRiccardo, CurnisAntonio, Della BellaPaolo, PadelettiLuigi, RavieleAntonio, SantiniMassimo, Salerno-UriarteJorge A. Transseptal catheterization in the electrophysiology laboratory: data from a multicenter survey spanning 12 years. J. Am. Coll. Cardiol. 2006;47 (5):1037–42.
- Andrade Jason G, DubucMarc, GuerraPeter G, MacleLaurent, RivardLena, RoyDenis, TalajicMario, ThibaultBernard, KhairyPaul. Cryoballoon ablation for atrial fibrillation. Indian Pacing Electrophysiol J. 2012;12 (2):39–53.
- 32. Andrade Jason G, KhairyPaul, GuerraPeter G, DeyellMarc W, RivardLena, MacleLaurent, ThibaultBernard, TalajicMario, RoyDenis, DubucMarc. Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies. Heart Rhythm. 2011;8 (9):1444–51.