Abstract

Purpose: Patients undergoing catheter ablation for atrial fibrillation (AF) are at a higher risk of thromboembolic events post-procedure and therefore require therapeutic anticoagulation after ablation. Anticoagulation strategies include performing the procedure on or off therapeutic warfarin, though the latter approach requires post-procedure bridging therapy with low molecular-weight heparin (LMWH) until a therapeutic INR is achieved. The purpose of this study is to compare the safety and efficacy of post-ablation dabigatran as compared to warfarin with LMWH bridging.

Methods: We performed a single-center retrospective analysis of consecutive patients who underwent catheter ablation for AF between January 2010 and December 2012 and received either post-procedure warfarin with a LMWH bridge or dabigatran. Warfarin was started the night of ablation; LMWH was started the next morning and continued until the INR was ≥ 2.0. Dabigatran was started the morning post-ablation.

Results: The analysis included 324 patients. Of these, mean age was 60 ± 9 years, 78% were male, 81% had CHADS\textsuperscript{2} scores of 0 or 1, and 181 (56%) received dabigatran post-ablation. Patients who received dabigatran had lower CHADS\textsuperscript{2} scores and were more likely to be in NYHA Class I. At 30-days post-procedure, there were 0 thromboembolic or bleeding complications in the dabigatran group versus 4 (2.8%) in the warfarin group (p=0.037). There were no deaths in either group at 30 days post-ablation.

Conclusions: Post-ablation dabigatran appears safe and efficacious compared to an interrupted warfarin strategy with LMWH bridging.

Introduction

Catheter ablation is now an established treatment modality for symptomatic atrial fibrillation (AF) in patients in whom anti-arrhythmic drug therapy has failed or is not preferred. Because patients with AF are at a higher risk of thromboembolic complications, most patients require anticoagulation. This is particularly true at the time of catheter ablation for AF when cardioversion may be performed and when thrombus may form at the ablation sites and on the catheters and sheaths in the left atrium. However, there is no consensus regarding the ideal management strategy of post-ablation anticoagulation.

During the ablation procedure, intravenous (IV) heparin is administered while the left atrium is instrumented. The standard of care is to prescribe some form of anticoagulation for at least two months afterward to reduce the risk of post-procedural thromboembolic events. Historically, patients on warfarin therapy discontinued its use several days prior to the procedure and were bridged with low molecular weight heparin (LMWH) either prior to and after the ablation procedure or post-ablation only. More recent literature has suggested that continuing warfarin without interruption is a viable alternate strategy. Still, many labs suspend oral anticoagulation just prior to catheter ablation for AF and resume the therapy following the procedure.

Dabigatran etexilate (Pradaxa) is a direct thrombin inhibitor approved for patients with non-valvular AF for the prevention of stroke and systemic embolization. Compared to warfarin, dabigatran carries with it a reduction in the risk of stroke, fewer food and drug interactions, requiring no INR monitoring, a reduction in
the risk of intracranial bleeding, and achieving more rapid onset and offset. Its disadvantages include the lack of an approved reversing agent, higher risk of gastrointestinal bleeding, and higher per-pill cost. \textsuperscript{11} A number of studies have now been published on the use of dabigatran perioperatively.\textsuperscript{13-18} However, these have primarily used uninterrupted warfarin as a comparison group. As such, the safety and efficacy of dabigatran versus an interrupted warfarin strategy remains largely unclear.

The aim of the present study is to evaluate the outcomes of patients who received post-ablation dabigatran compared to warfarin with a LMWH bridge in patients undergoing catheter ablation for AF at our institution.

Methods

Study Design

We performed a retrospective cohort study of consecutive patients who underwent catheter ablation for AF at Northwestern Memorial Hospital (Chicago, Illinois) between January 2010 and December 2012. The study protocol was approved by the local institutional review board. All patients with at least 30 days of post-ablation follow-up data were included. Patients were excluded if an alternate (i.e. neither warfarin nor dabigatran) oral anticoagulant was used, if warfarin was continued perioperatively without interruption, or if all anticoagulation was held post-procedurally due to a procedural complication.

The primary outcomes of our study were all-cause mortality and a composite endpoint of thromboembolic and bleeding-related events at 30-days. These included but were not limited to cases of cerebrovascular accidents, transient ischemic attacks, deep vein thromboses, pulmonary emboli, AV fistula formation, hematoma at catheter sites, and any internal hemorrhage that required blood transfusions or surgical interventions. A hematoma was classified as major if it required transfusion, surgical intervention, or hospital admission; all other hematomas were considered minor.

Periprocedural Anticoagulation

Patients on chronic warfarin therapy stopped warfarin 3 to 5 days prior to their procedure and were bridged with LMWH (e.g. dalteparin or enoxaparin based on formulary availability) subcutaneous injections if the INR was expected to be < 2.0 for more than 48 hours. LMWH was held for 2 doses before the procedure. Patients on chronic dabigatran therapy were instructed to hold 3 doses prior to their procedure with no other anticoagulants used in the interim. Patients on aspirin therapy continued aspirin until the time of their procedure. Most patients also underwent a transesophageal echocardiogram prior to ablation to assess for left-atrial appendage thrombus.

During the ablation procedure, while catheters and sheaths were in the left atrium, IV heparin was administered by an initial bolus of 100 Units/kg followed by repeat boluses every 30-60 minutes to maintain an ACT > 270 by as measured on an Abbott iSTAT1 machine. At the discretion of the individual provider, an IV heparin infusion without bolus was initiated 6 hours after sheath removal and discontinued on the morning after ablation.

Patients treated with post-ablation warfarin were started on warfarin the night of their catheter ablation. They were bridged with LMWH starting the morning after ablation and continued until a therapeutic INR of ≥ 2.0 was reached. Patients treated with dabigatran post-ablation were started on dabigatran the morning after ablation. Dabigatran was dosed according to serum creatinine levels -- either 150mg twice daily or 75mg twice daily if the creatinine clearance was 15-30 mg/ml. Regardless of strategy, anticoagulation was continued for at least 2 months post-procedure.

Statistical Methods

Patients were analyzed according to post-ablation anticoagulation strategy only. Statistical analyses were performed using SPSS version 21.0 for Windows (SPSS, Inc., Chicago, Illinois). Univariate analyses were performed using chi-squared or Fisher's exact test (if n<6) for categorical variables. Independent 2-tailed t-tests were performed for continuous variables. A p-value of <0.05 was considered statistically significant. Multivariate analysis was not attempted due to the small number of outcome events.

Results

Patient Characteristics

Between January 2010 and December 2012, there were 378 patients who underwent catheter ablation for AF at our institution. 54 of these cases were excluded from our study: 35 received an alternate novel oral anticoagulant, 13 received uninterrupted warfarin therapy, and 6 received no anticoagulation post-ablation due to a procedural complication. Of the 6 who received no post-ablation anticoagulation, 5 were in the context of intra-procedural cardiac perforation and 1 was in the context of intra-procedural hemoptysis. Demographic characteristics are summarized in Figure 1.

324 patients were included in the final analysis. 181 patients (55.9%) received post-ablation dabigatran and 143 (44.1%) received warfarin with LMWH post-ablation. Of the patients who received post-ablation dabigatran, 179 (98.9%) were prescribed 150mg twice daily and 2 (1.1%) were prescribed 75mg twice daily. LMWH bridging dose was left to the discretion of the individual provider. Average weight of those who received LMWH was 96.8 ± 28.0 kg. 79.1% received dalteparin 100 IU/kg, 14.5% received dalteparin 50 IU/kg, 6.4% received dalteparin 200 IU/kg, and 0.9% received enoxaparin 1mg/kg.

Figure 1: The description of cases excluded from the study and cases remaining for final analysis are shown here.
Baseline characteristics of the dabigatran group and warfarin group are shown in Table 1. The mean age of both groups was 60 ± 9 years. The dabigatran group included a higher percentage of males and patients with paroxysmal rather than persistent AF, but the differences were not statistically significant. Those in the dabigatran group were more likely to have a CHADS2 score of 0 or 1 (p=0.022), more likely reported as New York Heart Association (NYHA) Class I (p=0.001), and more likely to have had their ablation by cryoballoon (p<0.001). Patients in the warfarin arm were more likely to have undergone a prior catheter ablation (p=0.002). All 99 patients who were on dabigatran therapy prior to ablation continued dabigatran post-ablation. 32 patients previously on warfarin therapy were converted to dabigatran therapy post-ablation.

Outcomes and Cases

At 30-days post-procedure, there were 0 thromboembolic or bleeding complications in the dabigatran group versus 4 (2.8%) in the warfarin group (p=0.037). There were no deaths in either group at 30-days follow-up. Of the 4 complications included in the composite end-point, 1 patient suffered a transient ischemic attack (TIA), 2 patients had hematomas at the catheter insertion sites requiring surgical intervention, and 1 patient required blood product transfusions as a result of a hematoma (Table 2). These cases are briefly outlined as follows.

The patient who suffered a TIA post-ablation was a 45-year-old male with paroxysmal AF who was treated with LMWH (dalteparin 100 IU/kg) and warfarin periprocedurally. He presented to an ophthalmology clinic 9 days after ablation with sudden blurry vision in his right eye and was found to be in atrial flutter with a subtherapeutic INR. He had a negative CT Head and MR Brain. His visual symptoms resolved and he demonstrated no other neurologic signs or symptoms during this episode.

Of the patients who developed a groin hematoma, one was a 71-year-old woman who underwent a repeat ablation for paroxysmal AF. She developed an acute hematoma (11x14x17cm) two days after ablation while on ASA, warfarin, and unfractionated heparin. CT angiography showed an associated pseudoaneurysm, prompting surgical drainage and repair.

Another patient who developed a hematoma post-ablation was a 55-year-old woman with persistent AF. She received periprocedural warfarin and LMWH (dalteparin 100 IU/kg). Two weeks after her ablation, while taking warfarin, she developed a left groin hematoma resulting in compressive neuropathy. The hematoma required surgical evacuation.

Finally, the third hematoma case was that of a 77-year-old woman with paroxysmal AF who underwent radiofrequency ablation with periprocedural warfarin and LMWH bridging post-ablation (dalteparin 100 IU/kg). Five days post-ablation, while still taking LMWH, she was found to have a right groin hematoma (9.2x7.1cm) and her hemoglobin had declined to 7.5 g/dL from a baseline of 13.9 g/dL. She was transfused 2 units of packed red blood cells and recovered fully without requiring surgical intervention.

Discussion

In this retrospective cohort study, our institution's overall complication rates were similar to those previously reported in the literature.12 The use of dabigatran immediately following catheter ablation was associated with fewer thromboembolic and hemorrhagic complications as compared to the use of warfarin with LMWH bridging. Three bleeding complications and 1 thromboembolic complication were seen in the warfarin group, yielding a composite complication rate of 2.8% and thromboembolic complication rate of 0.7%.

There has been significant recent interest in examining the safety and efficacy of periprocedural novel oral anticoagulants for catheter ablation with no consensus at this time on an optimal anticoagulation protocol.23 Lakireddy et al. first reported a multicenter experience comparing periprocedural dabigatran to uninterrupted warfarin. In their study, periprocedural dabigatran use was associated with an increased risk of bleeding and thromboembolism (16% versus 6%; p=0.009).13 Other studies have since shown no significant differences in complications between the use of dabigatran and a warfarin-based strategy.15-16 More recently, various meta-analyses of these studies have also been performed.19-22 These largely continue to demonstrate

Table 1: Comparison of Demographic and Procedural Variables by Anticoagulation Strategy

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran (n=181)</th>
<th>Warfarin (n=143)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Gender</td>
<td>145 (80.1%)</td>
<td>107 (74.8%)</td>
<td>0.256</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.4 ± 9.4</td>
<td>60.2 ± 9.8</td>
<td>0.812</td>
</tr>
<tr>
<td>Hypertension</td>
<td>73 (40.3%)</td>
<td>66 (46.2%)</td>
<td>0.293</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>18 (9.9%)</td>
<td>23 (16.1%)</td>
<td>0.099</td>
</tr>
<tr>
<td>Serum Creatinine (mg/dL)</td>
<td>1.05 ± .23</td>
<td>1.05 ± .32</td>
<td>0.828</td>
</tr>
<tr>
<td>Structural Heart Disease</td>
<td>37 (20.4%)</td>
<td>42 (29.4%)</td>
<td>0.063</td>
</tr>
<tr>
<td>Prior Stroke, Transient Ischemic Attack</td>
<td>9 (5.0%)</td>
<td>11 (7.7%)</td>
<td>0.312</td>
</tr>
<tr>
<td>Prior Valve Surgery</td>
<td>3 (1.7%)</td>
<td>4 (2.8%)</td>
<td>0.704</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>6 (3.3%)</td>
<td>1 (0.7%)</td>
<td>0.139</td>
</tr>
<tr>
<td>Device (PPM/ICD)</td>
<td>16 (8.8%)</td>
<td>15 (10.5%)</td>
<td>0.616</td>
</tr>
<tr>
<td>Repeat Ablation</td>
<td>23 (12.7%)</td>
<td>37 (25.9%)</td>
<td>0.002</td>
</tr>
<tr>
<td>AF Type (Paroxysmal)</td>
<td>136 (75.1%)</td>
<td>98 (68.5%)</td>
<td>0.187</td>
</tr>
<tr>
<td>CHADS2 (Average)</td>
<td>0.66 ± 0.80</td>
<td>0.85 ± 0.95</td>
<td>0.045</td>
</tr>
<tr>
<td>0-1</td>
<td>157 (86.7%)</td>
<td>107 (74.8%)</td>
<td>0.022</td>
</tr>
<tr>
<td>2</td>
<td>19 (10.5%)</td>
<td>30 (21.0%)</td>
<td>0.001</td>
</tr>
<tr>
<td>3-5</td>
<td>5 (2.8%)</td>
<td>6 (4.2%)</td>
<td>0.001</td>
</tr>
<tr>
<td>NYHA Functional Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>172 (95.0%)</td>
<td>120 (83.9%)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3 (1.7%)</td>
<td>18 (12.6%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2 (1.1%)</td>
<td>2 (1.4%)</td>
<td></td>
</tr>
<tr>
<td>Pre-Ablation Warfarin</td>
<td>32 (17.7%)</td>
<td>108 (75.6%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Pre-Ablation Dabigatran</td>
<td>99 (54.7%)</td>
<td>0 (0.0%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Cryoblation</td>
<td>57 (31.5%)</td>
<td>13 (9.1%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Post-operative IV Heparin</td>
<td>90 (49.7%)</td>
<td>58 (40.6%)</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Abbreviations: CABG = coronary artery bypass graft; PPM = permanent pacemaker; ICD = implantable cardiac defibrillator; AF = atrial fibrillation; NYHA = New York Heart Association

Table 2: Comparison of Thromboembolic and Bleeding Complication Rates by Anticoagulation Strategy

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran (n=181)</th>
<th>Warfarin (n=143)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause Mortality</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Composite Complication Rate</td>
<td>0%</td>
<td>2.8% (n=4)</td>
<td>0.037</td>
</tr>
<tr>
<td>Hemorrhage Requiring Transfusion</td>
<td>0.7% (n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular Attack or Transient Ischemic Attack</td>
<td>0.7% (n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematoma at Catheter Insertion Site</td>
<td>1.4% (n=2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
bridging. In order to monitor the safety of this approach, ongoing
AF as compared to an interrupted warfarin strategy with LMWH
appears to be safe and efficacious following catheter ablation for
Conclusions:

Some aspects of our patient population merit discussion. Those
who received dabigatran post-ablation had fewer cardiovascular
co-morbidities than those in the warfarin arm, as demonstrated
by their lower CHADS, scores and NYHA class. As our study
cohort captures the time around when dabigatran was approved by
the FDA for use in non-valvular AF, it is possible that providers
were initially more selective in choosing appropriate candidates for
dabigatran therapy post-ablation. It is worth noting that no patients
previously given dabigatran were transitioned to warfarin post-
ablation while 32 (22.9%) previously on warfarin were transitioned
to dabigatran. This change could be due to patient preferences, ease
of administration post-ablation, or provider comfort with the new
anticoagulant. Finally, LMWH bridge dosing and the use of IV
heparin immediately post-ablation were not standardized during our
study period, potentially creating bias in our study results. Notably,
2 of the 3 bleeding complications occurred in the setting of a higher
dalteparin dosing regimen.

Our study also revealed that cryoballoon catheters were used in
significantly more cases in which patients were given dabigatran
post-ablation. Cryoballoon catheters are increasingly being used
for catheter ablations because they may create more contiguous and
potentially less thrombogenic lesion sets.23–24 As compared to our
institution’s standard irrigated tip radiofrequency ablation catheters
used for ablation of AF, cryoballoon catheters require larger sheaths
(8.5 Fr versus 14 Fr). While the use of cryoablation catheters could
have concurrently decreased the incidence of thromboembolic
complications, these large 14 Fr catheters could have also
increased the risk of hemorrhagic complications, particularly at the
venipuncture sites in the groin. Interestingly, only 1 of the 3 cases
with a hemorrhagic complication found in our study used these
catheters during the procedure and all were in the warfarin arm.

Some limitations of this study deserve mention. The sample size
of this study limited our ability to perform multivariate analyses to
assess whether the type of anticoagulation served as an independent
risk factor for adverse events. Given the small number of anticipated
events, however, very large studies would be needed to generate
enough events to support such an analysis. In addition, our institution’s
anticoagulation protocols could differ from that of other centers thus
limiting the generalizability of the results.

Conclusions:

Our study suggests that the use of periprocedural dabigatran
appears to be safe and efficacious following catheter ablation for
AF as compared to an interrupted warfarin strategy with LMWH
bridging. In order to monitor the safety of this approach, ongoing
institutional and multi-center registries will be essential to developing
large cohorts of patients who are prescribed dabigatran or other novel
oral anticoagulants following ablation.

References:

Daoud EG, Calkins H, Hall B, Reddy V, Augello G, Reynolds MR, Vinekar C,
Liu CY, Berry SM, Berry DA; ThermoCool AF Trial Investigators. Comparison of
antiarrhythmic drug therapy and radiofrequency catheter ablation in patients
with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;


3. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, Crijs HJ,
Damiano RJ Jr, Davies DW, DiMarco J, Edgerton J, Ellenbogen K, Ezekowitz MD,
Haines DE, Haissaguerre M, Hindricks G, Iseska Y, Jackman W, Jalife J,
K, Lindsay BD, Mansour M, Marchlinski FE, McCarthy PM, Mont JL, Morady
F, Nademanee K, Nakagawa H, Natale A, Nattel S, Packer DL, Pappone C,
Prystowsky E, Raviele A, Reddy V, Ruskin JN, Shenbin RJ, Tsao HM, Wilber D;
Heart Rhythm Society Task Force on Catheter and Surgical Ablation of Atrial
Fibrillation. 2012 HRS/EHRA/ECAS expert consensus statement on catheter
and surgical ablation of atrial fibrillation: recommendations for patient selection,
procedural techniques, patient management and follow-up, definitions, endpoints,
and research trial design: a report of the Heart Rhythm Society (HRS) Task
Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in
partnership with the European Heart Rhythm Association (EHRA), a registered
branch of the European Society of Cardiology (ESC) and the European Cardiac
Arrhythmia Society (ECAS); and in collaboration with the American College of
Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart
Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed
by the governing bodies of the American College of Cardiology Foundation, the
American Heart Association, the European Cardiac Arrhythmia Society, the
European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia

4. Wann LS, Curtis AB, January CT, Ellenbogen KA, Lowe JE, Estes NA 3rd, Page
RL, Ezekowitz MD, Slotwiner DJ, Jackman WM, Stevenson WG, Tracy CM;
2011 Writing Group Members, Fuster V, Ryden LE, Cannon DS, Le Heuzey
JY, Crijs HJ, Lowe JE, Curtis AB, Olsson S, Ellenbogen KA, Prystowsky EN,
Halperin JL, Tamargo JL, Kay GN, Wann L; 2006 Writing Committee Members,
Jacobs AK, Anderson JL, Albert N, Hochman JS, Buller CE, Kuzner FG,
Creager MA, Ohman EM, Ettinger SM, Stevenson WG, Guyton RA, Tarkington
LG, Halperin JL, Yancy CW; ACC/AHA Task Force Members. 2011 ACCF/ AHA/HRS
focused update on the management of patients with atrial fibrillation (update
the 2006 guidelines): a report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice Guidelines.
Circulation 2011;123(1):104-123.

5. Wazni OM, Rossillo A, Marrouche NF, Saad EB, Martin DO, Bhargava M,
Bash D, Beheiry S, Wexman M, Potenza D, Pisano E, Fanelli R, Bonso A,
Themistoclakis S, Eriyce D, Saliba WI, Schweikert RA, Brachmann J, Raviele
A, Natale A. Embolic events and char formation during pulmonary vein isolation
in patients with atrial fibrillation: impact of different anticoagulation regimens

Kulakowski P, Lip GY, Shah D, Wolpert C; Scientific Initiatives Committee of the
European Heart Rhythm Association. Consensus document on antithrombotic
therapy in the setting of electrophysiological procedures. Europace. 2008; 10(5):
14 Journal of Atrial Fibrillation

Original Research

513-527.


